Loading…
Fabrication of Woven Jute Fiber Epoxy Bio-Composites through the Epoxy/Thiol-Ene Photopolymerization Technique
An eco-friendly epoxy/thiol-ene photopolymerization (ETEP) process was employed to prepare epoxy bio-composites using a commercial biobased epoxy resin and a woven jute fabric as reinforcement. In this process the components of the thiol-ene system, an allyl-functionalized ditertiary amine curing ag...
Saved in:
Published in: | Polymers 2022-12, Vol.15 (1), p.60 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An eco-friendly epoxy/thiol-ene photopolymerization (ETEP) process was employed to prepare epoxy bio-composites using a commercial biobased epoxy resin and a woven jute fabric as reinforcement. In this process the components of the thiol-ene system, an allyl-functionalized ditertiary amine curing agent, a multifunctional thiol and a radical photoinitiator, were added to the epoxy resin to produce a polyether-polythioether crosslinked co-network. Moreover, the jute fibers were functionalized with thiol groups using the 3-mercaptopropyl (trimethoxysilane) with the purpose of creating a chemically bonded polymeric matrix/fiber system. The obtained bio-composites prepared with the thiol-functionalized cellulose fibers exhibited an increase up to 52% and 40% in flexural modulus and strength with respect to the non-functionalized counterparts. Under the three-point bending loadings, the composites displayed higher deformation at break and toughness due to the presence of polythioethers in the co-network. The prepared bio-composites developed in this work are excellent candidates to extend the use of cellulose fibers for structural applications. |
---|---|
ISSN: | 2073-4360 2073-4360 |
DOI: | 10.3390/polym15010060 |