Loading…
Control of Ca2+ signals by astrocyte nanoscale morphology at tripartite synapses
Much of the Ca2+ activity in astrocytes is spatially restricted to microdomains and occurs in fine processes that form a complex anatomical meshwork, the so‐called spongiform domain. A growing body of literature indicates that those astrocytic Ca2+ signals can influence the activity of neuronal syna...
Saved in:
Published in: | Glia 2022-12, Vol.70 (12), p.2378-2391 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 2391 |
container_issue | 12 |
container_start_page | 2378 |
container_title | Glia |
container_volume | 70 |
creator | Denizot, Audrey Arizono, Misa Nägerl, U. Valentin Berry, Hugues De Schutter, Erik |
description | Much of the Ca2+ activity in astrocytes is spatially restricted to microdomains and occurs in fine processes that form a complex anatomical meshwork, the so‐called spongiform domain. A growing body of literature indicates that those astrocytic Ca2+ signals can influence the activity of neuronal synapses and thus tune the flow of information through neuronal circuits. Because of technical difficulties in accessing the small spatial scale involved, the role of astrocyte morphology on Ca2+ microdomain activity remains poorly understood. Here, we use computational tools and idealized 3D geometries of fine processes based on recent super‐resolution microscopy data to investigate the mechanistic link between astrocytic nanoscale morphology and local Ca2+ activity. Simulations demonstrate that the nano‐morphology of astrocytic processes powerfully shapes the spatio‐temporal properties of Ca2+ signals and promotes local Ca2+ activity. The model predicts that this effect is attenuated upon astrocytic swelling, hallmark of brain diseases, which we confirm experimentally in hypo‐osmotic conditions. Upon repeated neurotransmitter release events, the model predicts that swelling hinders astrocytic signal propagation. Overall, this study highlights the influence of the complex morphology of astrocytes at the nanoscale and its remodeling in pathological conditions on neuron‐astrocyte communication at so‐called tripartite synapses, where astrocytic processes come into close contact with pre‐ and postsynaptic structures.
Main Points
Astrocyte nano‐morphology favors the compartmentalization of biochemical signals.
This compartmentalization promotes local Ca2+ activity and signal propagation robustness.
In contrast, its pathological remodeling upon swelling attenuates Ca2+ activity. |
doi_str_mv | 10.1002/glia.24258 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9825906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2723322066</sourcerecordid><originalsourceid>FETCH-LOGICAL-h4238-c36e5677b2e4bd6e6c53df1665fd5bf90c70965f19bd6fab59a1db789043d8ff3</originalsourceid><addsrcrecordid>eNpdkV1LwzAUhoMobn7c-AsK3ihSzXeTG2EMncJAL_Q6pG26ZWRNbbpJ_72pG4K7Ss55n_MekheAKwTvEYT4YeGsvscUM3EExghKkSJE-DEYQyFpiqhEI3AWwgpCFIvsFIwIhzKTTIzB-9TXXetd4qtkqvFdEuyi1i4keZ_oEJWi70xS69qHQjuTrH3bLL3ziyh3SdfaRredjUjoa90EEy7ASRXnzeX-PAefz08f05d0_jZ7nU7m6ZJiItKCcMN4luXY0LzkhheMlBXinFUlyysJiwzKWCAZ1UrnTGpU5pmQkJJSVBU5B48732aTr01ZmPgM7VTT2rVue-W1Vf-V2i7Vwm-VFJhJyKPB7c5geTD2MpmroQcJE5hjucWRvdkva_3XxoROrW0ojHO6Nn4TFM4QhZwiOtheH6Arv2mHL40UJgRjyAcK7ahv60z_tx5BNSSqhkTVb6JqNn-d_N7ID3ZHlP8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723322066</pqid></control><display><type>article</type><title>Control of Ca2+ signals by astrocyte nanoscale morphology at tripartite synapses</title><source>Wiley</source><creator>Denizot, Audrey ; Arizono, Misa ; Nägerl, U. Valentin ; Berry, Hugues ; De Schutter, Erik</creator><creatorcontrib>Denizot, Audrey ; Arizono, Misa ; Nägerl, U. Valentin ; Berry, Hugues ; De Schutter, Erik</creatorcontrib><description>Much of the Ca2+ activity in astrocytes is spatially restricted to microdomains and occurs in fine processes that form a complex anatomical meshwork, the so‐called spongiform domain. A growing body of literature indicates that those astrocytic Ca2+ signals can influence the activity of neuronal synapses and thus tune the flow of information through neuronal circuits. Because of technical difficulties in accessing the small spatial scale involved, the role of astrocyte morphology on Ca2+ microdomain activity remains poorly understood. Here, we use computational tools and idealized 3D geometries of fine processes based on recent super‐resolution microscopy data to investigate the mechanistic link between astrocytic nanoscale morphology and local Ca2+ activity. Simulations demonstrate that the nano‐morphology of astrocytic processes powerfully shapes the spatio‐temporal properties of Ca2+ signals and promotes local Ca2+ activity. The model predicts that this effect is attenuated upon astrocytic swelling, hallmark of brain diseases, which we confirm experimentally in hypo‐osmotic conditions. Upon repeated neurotransmitter release events, the model predicts that swelling hinders astrocytic signal propagation. Overall, this study highlights the influence of the complex morphology of astrocytes at the nanoscale and its remodeling in pathological conditions on neuron‐astrocyte communication at so‐called tripartite synapses, where astrocytic processes come into close contact with pre‐ and postsynaptic structures.
Main Points
Astrocyte nano‐morphology favors the compartmentalization of biochemical signals.
This compartmentalization promotes local Ca2+ activity and signal propagation robustness.
In contrast, its pathological remodeling upon swelling attenuates Ca2+ activity.</description><identifier>ISSN: 0894-1491</identifier><identifier>ISSN: 1098-1136</identifier><identifier>EISSN: 1098-1136</identifier><identifier>DOI: 10.1002/glia.24258</identifier><identifier>PMID: 36097958</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Astrocytes ; Calcium ions ; calcium microdomains ; Calcium signalling ; Computational neuroscience ; Information flow ; intracellular signaling ; Life Sciences ; Morphology ; nano‐morphology ; Neurobiology ; Neurons and Cognition ; Neurotransmitter release ; Neurotransmitters ; reaction–diffusion simulations ; Signal processing ; Software ; Swelling ; Synapses</subject><ispartof>Glia, 2022-12, Vol.70 (12), p.2378-2391</ispartof><rights>2022 The Authors. published by Wiley Periodicals LLC.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 The Authors. GLIA published by Wiley Periodicals LLC.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3470-683X ; 0000-0002-7726-6531 ; 0000-0001-6831-9008 ; 0000-0002-3336-0163 ; 0000-0001-8618-5138</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-03582629$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Denizot, Audrey</creatorcontrib><creatorcontrib>Arizono, Misa</creatorcontrib><creatorcontrib>Nägerl, U. Valentin</creatorcontrib><creatorcontrib>Berry, Hugues</creatorcontrib><creatorcontrib>De Schutter, Erik</creatorcontrib><title>Control of Ca2+ signals by astrocyte nanoscale morphology at tripartite synapses</title><title>Glia</title><description>Much of the Ca2+ activity in astrocytes is spatially restricted to microdomains and occurs in fine processes that form a complex anatomical meshwork, the so‐called spongiform domain. A growing body of literature indicates that those astrocytic Ca2+ signals can influence the activity of neuronal synapses and thus tune the flow of information through neuronal circuits. Because of technical difficulties in accessing the small spatial scale involved, the role of astrocyte morphology on Ca2+ microdomain activity remains poorly understood. Here, we use computational tools and idealized 3D geometries of fine processes based on recent super‐resolution microscopy data to investigate the mechanistic link between astrocytic nanoscale morphology and local Ca2+ activity. Simulations demonstrate that the nano‐morphology of astrocytic processes powerfully shapes the spatio‐temporal properties of Ca2+ signals and promotes local Ca2+ activity. The model predicts that this effect is attenuated upon astrocytic swelling, hallmark of brain diseases, which we confirm experimentally in hypo‐osmotic conditions. Upon repeated neurotransmitter release events, the model predicts that swelling hinders astrocytic signal propagation. Overall, this study highlights the influence of the complex morphology of astrocytes at the nanoscale and its remodeling in pathological conditions on neuron‐astrocyte communication at so‐called tripartite synapses, where astrocytic processes come into close contact with pre‐ and postsynaptic structures.
Main Points
Astrocyte nano‐morphology favors the compartmentalization of biochemical signals.
This compartmentalization promotes local Ca2+ activity and signal propagation robustness.
In contrast, its pathological remodeling upon swelling attenuates Ca2+ activity.</description><subject>Astrocytes</subject><subject>Calcium ions</subject><subject>calcium microdomains</subject><subject>Calcium signalling</subject><subject>Computational neuroscience</subject><subject>Information flow</subject><subject>intracellular signaling</subject><subject>Life Sciences</subject><subject>Morphology</subject><subject>nano‐morphology</subject><subject>Neurobiology</subject><subject>Neurons and Cognition</subject><subject>Neurotransmitter release</subject><subject>Neurotransmitters</subject><subject>reaction–diffusion simulations</subject><subject>Signal processing</subject><subject>Software</subject><subject>Swelling</subject><subject>Synapses</subject><issn>0894-1491</issn><issn>1098-1136</issn><issn>1098-1136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNpdkV1LwzAUhoMobn7c-AsK3ihSzXeTG2EMncJAL_Q6pG26ZWRNbbpJ_72pG4K7Ss55n_MekheAKwTvEYT4YeGsvscUM3EExghKkSJE-DEYQyFpiqhEI3AWwgpCFIvsFIwIhzKTTIzB-9TXXetd4qtkqvFdEuyi1i4keZ_oEJWi70xS69qHQjuTrH3bLL3ziyh3SdfaRredjUjoa90EEy7ASRXnzeX-PAefz08f05d0_jZ7nU7m6ZJiItKCcMN4luXY0LzkhheMlBXinFUlyysJiwzKWCAZ1UrnTGpU5pmQkJJSVBU5B48732aTr01ZmPgM7VTT2rVue-W1Vf-V2i7Vwm-VFJhJyKPB7c5geTD2MpmroQcJE5hjucWRvdkva_3XxoROrW0ojHO6Nn4TFM4QhZwiOtheH6Arv2mHL40UJgRjyAcK7ahv60z_tx5BNSSqhkTVb6JqNn-d_N7ID3ZHlP8</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Denizot, Audrey</creator><creator>Arizono, Misa</creator><creator>Nägerl, U. Valentin</creator><creator>Berry, Hugues</creator><creator>De Schutter, Erik</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>7QL</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3470-683X</orcidid><orcidid>https://orcid.org/0000-0002-7726-6531</orcidid><orcidid>https://orcid.org/0000-0001-6831-9008</orcidid><orcidid>https://orcid.org/0000-0002-3336-0163</orcidid><orcidid>https://orcid.org/0000-0001-8618-5138</orcidid></search><sort><creationdate>202212</creationdate><title>Control of Ca2+ signals by astrocyte nanoscale morphology at tripartite synapses</title><author>Denizot, Audrey ; Arizono, Misa ; Nägerl, U. Valentin ; Berry, Hugues ; De Schutter, Erik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h4238-c36e5677b2e4bd6e6c53df1665fd5bf90c70965f19bd6fab59a1db789043d8ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Astrocytes</topic><topic>Calcium ions</topic><topic>calcium microdomains</topic><topic>Calcium signalling</topic><topic>Computational neuroscience</topic><topic>Information flow</topic><topic>intracellular signaling</topic><topic>Life Sciences</topic><topic>Morphology</topic><topic>nano‐morphology</topic><topic>Neurobiology</topic><topic>Neurons and Cognition</topic><topic>Neurotransmitter release</topic><topic>Neurotransmitters</topic><topic>reaction–diffusion simulations</topic><topic>Signal processing</topic><topic>Software</topic><topic>Swelling</topic><topic>Synapses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Denizot, Audrey</creatorcontrib><creatorcontrib>Arizono, Misa</creatorcontrib><creatorcontrib>Nägerl, U. Valentin</creatorcontrib><creatorcontrib>Berry, Hugues</creatorcontrib><creatorcontrib>De Schutter, Erik</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>Wiley Free Archive</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Glia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Denizot, Audrey</au><au>Arizono, Misa</au><au>Nägerl, U. Valentin</au><au>Berry, Hugues</au><au>De Schutter, Erik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control of Ca2+ signals by astrocyte nanoscale morphology at tripartite synapses</atitle><jtitle>Glia</jtitle><date>2022-12</date><risdate>2022</risdate><volume>70</volume><issue>12</issue><spage>2378</spage><epage>2391</epage><pages>2378-2391</pages><issn>0894-1491</issn><issn>1098-1136</issn><eissn>1098-1136</eissn><abstract>Much of the Ca2+ activity in astrocytes is spatially restricted to microdomains and occurs in fine processes that form a complex anatomical meshwork, the so‐called spongiform domain. A growing body of literature indicates that those astrocytic Ca2+ signals can influence the activity of neuronal synapses and thus tune the flow of information through neuronal circuits. Because of technical difficulties in accessing the small spatial scale involved, the role of astrocyte morphology on Ca2+ microdomain activity remains poorly understood. Here, we use computational tools and idealized 3D geometries of fine processes based on recent super‐resolution microscopy data to investigate the mechanistic link between astrocytic nanoscale morphology and local Ca2+ activity. Simulations demonstrate that the nano‐morphology of astrocytic processes powerfully shapes the spatio‐temporal properties of Ca2+ signals and promotes local Ca2+ activity. The model predicts that this effect is attenuated upon astrocytic swelling, hallmark of brain diseases, which we confirm experimentally in hypo‐osmotic conditions. Upon repeated neurotransmitter release events, the model predicts that swelling hinders astrocytic signal propagation. Overall, this study highlights the influence of the complex morphology of astrocytes at the nanoscale and its remodeling in pathological conditions on neuron‐astrocyte communication at so‐called tripartite synapses, where astrocytic processes come into close contact with pre‐ and postsynaptic structures.
Main Points
Astrocyte nano‐morphology favors the compartmentalization of biochemical signals.
This compartmentalization promotes local Ca2+ activity and signal propagation robustness.
In contrast, its pathological remodeling upon swelling attenuates Ca2+ activity.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>36097958</pmid><doi>10.1002/glia.24258</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3470-683X</orcidid><orcidid>https://orcid.org/0000-0002-7726-6531</orcidid><orcidid>https://orcid.org/0000-0001-6831-9008</orcidid><orcidid>https://orcid.org/0000-0002-3336-0163</orcidid><orcidid>https://orcid.org/0000-0001-8618-5138</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-1491 |
ispartof | Glia, 2022-12, Vol.70 (12), p.2378-2391 |
issn | 0894-1491 1098-1136 1098-1136 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9825906 |
source | Wiley |
subjects | Astrocytes Calcium ions calcium microdomains Calcium signalling Computational neuroscience Information flow intracellular signaling Life Sciences Morphology nano‐morphology Neurobiology Neurons and Cognition Neurotransmitter release Neurotransmitters reaction–diffusion simulations Signal processing Software Swelling Synapses |
title | Control of Ca2+ signals by astrocyte nanoscale morphology at tripartite synapses |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A57%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20of%20Ca2+%20signals%20by%20astrocyte%20nanoscale%20morphology%20at%20tripartite%20synapses&rft.jtitle=Glia&rft.au=Denizot,%20Audrey&rft.date=2022-12&rft.volume=70&rft.issue=12&rft.spage=2378&rft.epage=2391&rft.pages=2378-2391&rft.issn=0894-1491&rft.eissn=1098-1136&rft_id=info:doi/10.1002/glia.24258&rft_dat=%3Cproquest_pubme%3E2723322066%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-h4238-c36e5677b2e4bd6e6c53df1665fd5bf90c70965f19bd6fab59a1db789043d8ff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2723322066&rft_id=info:pmid/36097958&rfr_iscdi=true |