Loading…

Hierarchical particle optimization for cortical shape correspondence in temporal lobe resection

Anterior temporal lobe resection is an effective treatment for temporal lobe epilepsy. The post-surgical structural changes could influence the follow-up treatment. Capturing post-surgical changes necessitates a well-established cortical shape correspondence between pre- and post-surgical surfaces....

Full description

Saved in:
Bibliographic Details
Published in:Computers in biology and medicine 2023-01, Vol.152, p.106414-106414, Article 106414
Main Authors: Liu, Yue, Bao, Shunxing, Englot, Dario J., Morgan, Victoria L., Taylor, Warren D., Wei, Ying, Oguz, Ipek, Landman, Bennett A., Lyu, Ilwoo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Anterior temporal lobe resection is an effective treatment for temporal lobe epilepsy. The post-surgical structural changes could influence the follow-up treatment. Capturing post-surgical changes necessitates a well-established cortical shape correspondence between pre- and post-surgical surfaces. Yet, most cortical surface registration methods are designed for normal neuroanatomy. Surgical changes can introduce wide ranging artifacts in correspondence, for which conventional surface registration methods may not work as intended. In this paper, we propose a novel particle method for one-to-one dense shape correspondence between pre- and post-surgical surfaces with temporal lobe resection. The proposed method can handle partial structural abnormality involving non-rigid changes. Unlike existing particle methods using implicit particle adjacency, we consider explicit particle adjacency to establish a smooth correspondence. Moreover, we propose hierarchical optimization of particles rather than full optimization of all particles at once to avoid trappings of locally optimal particle update. We evaluate the proposed method on 25 pairs of T1-MRI with pre- and post-simulated resection on the anterior temporal lobe and 25 pairs of patients with actual resection. We show improved accuracy over several cortical regions in terms of ROI boundary Hausdorff distance with 4.29 mm and Dice similarity coefficients with average value 0.841, compared to existing surface registration methods on simulated data. In 25 patients with actual resection of the anterior temporal lobe, our method shows an improved shape correspondence in qualitative and quantitative evaluation on parcellation-off ratio with average value 0.061 and cortical thickness changes. We also show better smoothness of the correspondence without self-intersection, compared with point-wise matching methods which show various degrees of self-intersection. The proposed method establishes a promising one-to-one dense shape correspondence for temporal lobe resection. The resulting correspondence is smooth without self-intersection. The proposed hierarchical optimization strategy could accelerate optimization and improve the optimization accuracy. According to the results on the paired surfaces with temporal lobe resection, the proposed method outperforms the compared methods and is more reliable to capture cortical thickness changes. •We aim at the shape correspondence problem in temporal lobe resection. This probl
ISSN:0010-4825
1879-0534
DOI:10.1016/j.compbiomed.2022.106414