Loading…

Expiratory Aerosol pH: The Overlooked Driver of Airborne Virus Inactivation

Respiratory viruses, including influenza virus and SARS-CoV-2, are transmitted by the airborne route. Air filtration and ventilation mechanically reduce the concentration of airborne viruses and are necessary tools for disease mitigation. However, they ignore the potential impact of the chemical env...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science & technology 2023-01, Vol.57 (1), p.486-497
Main Authors: Luo, Beiping, Schaub, Aline, Glas, Irina, Klein, Liviana K., David, Shannon C., Bluvshtein, Nir, Violaki, Kalliopi, Motos, Ghislain, Pohl, Marie O., Hugentobler, Walter, Nenes, Athanasios, Krieger, Ulrich K., Stertz, Silke, Peter, Thomas, Kohn, Tamar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a457t-9fad488c44cae857b634c29d33ff3abbd550584ecb35f83550dbb9783e84f3f73
cites cdi_FETCH-LOGICAL-a457t-9fad488c44cae857b634c29d33ff3abbd550584ecb35f83550dbb9783e84f3f73
container_end_page 497
container_issue 1
container_start_page 486
container_title Environmental science & technology
container_volume 57
creator Luo, Beiping
Schaub, Aline
Glas, Irina
Klein, Liviana K.
David, Shannon C.
Bluvshtein, Nir
Violaki, Kalliopi
Motos, Ghislain
Pohl, Marie O.
Hugentobler, Walter
Nenes, Athanasios
Krieger, Ulrich K.
Stertz, Silke
Peter, Thomas
Kohn, Tamar
description Respiratory viruses, including influenza virus and SARS-CoV-2, are transmitted by the airborne route. Air filtration and ventilation mechanically reduce the concentration of airborne viruses and are necessary tools for disease mitigation. However, they ignore the potential impact of the chemical environment surrounding aerosolized viruses, which determines the aerosol pH. Atmospheric aerosol gravitates toward acidic pH, and enveloped viruses are prone to inactivation at strong acidity levels. Yet, the acidity of expiratory aerosol particles and its effect on airborne virus persistence have not been examined. Here, we combine pH-dependent inactivation rates of influenza A virus (IAV) and SARS-CoV-2 with microphysical properties of respiratory fluids using a biophysical aerosol model. We find that particles exhaled into indoor air (with relative humidity ≥ 50%) become mildly acidic (pH ∼ 4), rapidly inactivating IAV within minutes, whereas SARS-CoV-2 requires days. If indoor air is enriched with nonhazardous levels of nitric acid, aerosol pH drops by up to 2 units, decreasing 99%-inactivation times for both viruses in small aerosol particles to below 30 s. Conversely, unintentional removal of volatile acids from indoor air may elevate pH and prolong airborne virus persistence. The overlooked role of aerosol acidity has profound implications for virus transmission and mitigation strategies.
doi_str_mv 10.1021/acs.est.2c05777
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9835828</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2756123692</sourcerecordid><originalsourceid>FETCH-LOGICAL-a457t-9fad488c44cae857b634c29d33ff3abbd550584ecb35f83550dbb9783e84f3f73</originalsourceid><addsrcrecordid>eNp1kUtLxDAUhYMoOj7W7iTgRpCOeTRN6kIYfKPgRsVdSNNEo51mTNpB_70ZZhxUcBUu-c65jwPALkZDjAg-UjoOTeyGRCPGOV8BA8wIyphgeBUMEMI0K2nxtAE2Y3xFCBGKxDrYoAWjvCjpANycf0xcUJ0Pn3Bkgo--gZOrY3j_YuDd1ITG-zdTw7PgUgG9hSMXKh9aAx9d6CO8bpXu3FR1zrfbYM2qJpqdxbsFHi7O70-vstu7y-vT0W2mcsa7rLSqzoXQea6VEYxXBc01KWtKraWqqmrGEBO50RVlVtBU1VVVckGNyC21nG6Bk7nvpK_Gptam7YJq5CS4sQqf0isnf_-07kU--6ksk5sgIhkcLAyCf-_T_eTYRW2aRrXG91ESzgpMaFGShO7_QV99H9q0XqKKnGGOME7U0ZzS6YIxGLscBiM5C0qmoORMvQgqKfZ-7rDkv5NJwOEcmCmXPf-z-wLio59f</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2764517011</pqid></control><display><type>article</type><title>Expiratory Aerosol pH: The Overlooked Driver of Airborne Virus Inactivation</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Luo, Beiping ; Schaub, Aline ; Glas, Irina ; Klein, Liviana K. ; David, Shannon C. ; Bluvshtein, Nir ; Violaki, Kalliopi ; Motos, Ghislain ; Pohl, Marie O. ; Hugentobler, Walter ; Nenes, Athanasios ; Krieger, Ulrich K. ; Stertz, Silke ; Peter, Thomas ; Kohn, Tamar</creator><creatorcontrib>Luo, Beiping ; Schaub, Aline ; Glas, Irina ; Klein, Liviana K. ; David, Shannon C. ; Bluvshtein, Nir ; Violaki, Kalliopi ; Motos, Ghislain ; Pohl, Marie O. ; Hugentobler, Walter ; Nenes, Athanasios ; Krieger, Ulrich K. ; Stertz, Silke ; Peter, Thomas ; Kohn, Tamar</creatorcontrib><description>Respiratory viruses, including influenza virus and SARS-CoV-2, are transmitted by the airborne route. Air filtration and ventilation mechanically reduce the concentration of airborne viruses and are necessary tools for disease mitigation. However, they ignore the potential impact of the chemical environment surrounding aerosolized viruses, which determines the aerosol pH. Atmospheric aerosol gravitates toward acidic pH, and enveloped viruses are prone to inactivation at strong acidity levels. Yet, the acidity of expiratory aerosol particles and its effect on airborne virus persistence have not been examined. Here, we combine pH-dependent inactivation rates of influenza A virus (IAV) and SARS-CoV-2 with microphysical properties of respiratory fluids using a biophysical aerosol model. We find that particles exhaled into indoor air (with relative humidity ≥ 50%) become mildly acidic (pH ∼ 4), rapidly inactivating IAV within minutes, whereas SARS-CoV-2 requires days. If indoor air is enriched with nonhazardous levels of nitric acid, aerosol pH drops by up to 2 units, decreasing 99%-inactivation times for both viruses in small aerosol particles to below 30 s. Conversely, unintentional removal of volatile acids from indoor air may elevate pH and prolong airborne virus persistence. The overlooked role of aerosol acidity has profound implications for virus transmission and mitigation strategies.</description><identifier>ISSN: 0013-936X</identifier><identifier>ISSN: 1520-5851</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.2c05777</identifier><identifier>PMID: 36537693</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Acidity ; Aerosols ; Air Pollution, Indoor ; Atmospheric aerosols ; COVID-19 ; Deactivation ; Disease control ; Disease transmission ; Disease Transmission, Infectious ; Ecotoxicology and Public Health ; Humans ; Hydrogen-Ion Concentration ; Inactivation ; Indoor environments ; Influenza ; Influenza A ; Mechanical ventilation ; Mitigation ; Nitric acid ; pH effects ; Relative humidity ; Respiratory Aerosols and Droplets ; SARS-CoV-2 ; Severe acute respiratory syndrome coronavirus 2 ; Viral diseases ; Virus Inactivation ; Viruses ; Volatile acids</subject><ispartof>Environmental science &amp; technology, 2023-01, Vol.57 (1), p.486-497</ispartof><rights>2022 The Authors. Published by American Chemical Society</rights><rights>Copyright American Chemical Society Jan 10, 2023</rights><rights>2022 The Authors. Published by American Chemical Society 2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a457t-9fad488c44cae857b634c29d33ff3abbd550584ecb35f83550dbb9783e84f3f73</citedby><cites>FETCH-LOGICAL-a457t-9fad488c44cae857b634c29d33ff3abbd550584ecb35f83550dbb9783e84f3f73</cites><orcidid>0000-0002-7379-752X ; 0000-0002-7999-4460 ; 0000-0001-9491-2892 ; 0000-0003-3873-9970 ; 0000-0003-4958-2657 ; 0000-0002-7205-1718 ; 0000-0001-6976-6360 ; 0000-0003-0395-6561 ; 0000-0002-1468-6678 ; 0000-0003-3345-9443</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36537693$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Luo, Beiping</creatorcontrib><creatorcontrib>Schaub, Aline</creatorcontrib><creatorcontrib>Glas, Irina</creatorcontrib><creatorcontrib>Klein, Liviana K.</creatorcontrib><creatorcontrib>David, Shannon C.</creatorcontrib><creatorcontrib>Bluvshtein, Nir</creatorcontrib><creatorcontrib>Violaki, Kalliopi</creatorcontrib><creatorcontrib>Motos, Ghislain</creatorcontrib><creatorcontrib>Pohl, Marie O.</creatorcontrib><creatorcontrib>Hugentobler, Walter</creatorcontrib><creatorcontrib>Nenes, Athanasios</creatorcontrib><creatorcontrib>Krieger, Ulrich K.</creatorcontrib><creatorcontrib>Stertz, Silke</creatorcontrib><creatorcontrib>Peter, Thomas</creatorcontrib><creatorcontrib>Kohn, Tamar</creatorcontrib><title>Expiratory Aerosol pH: The Overlooked Driver of Airborne Virus Inactivation</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Respiratory viruses, including influenza virus and SARS-CoV-2, are transmitted by the airborne route. Air filtration and ventilation mechanically reduce the concentration of airborne viruses and are necessary tools for disease mitigation. However, they ignore the potential impact of the chemical environment surrounding aerosolized viruses, which determines the aerosol pH. Atmospheric aerosol gravitates toward acidic pH, and enveloped viruses are prone to inactivation at strong acidity levels. Yet, the acidity of expiratory aerosol particles and its effect on airborne virus persistence have not been examined. Here, we combine pH-dependent inactivation rates of influenza A virus (IAV) and SARS-CoV-2 with microphysical properties of respiratory fluids using a biophysical aerosol model. We find that particles exhaled into indoor air (with relative humidity ≥ 50%) become mildly acidic (pH ∼ 4), rapidly inactivating IAV within minutes, whereas SARS-CoV-2 requires days. If indoor air is enriched with nonhazardous levels of nitric acid, aerosol pH drops by up to 2 units, decreasing 99%-inactivation times for both viruses in small aerosol particles to below 30 s. Conversely, unintentional removal of volatile acids from indoor air may elevate pH and prolong airborne virus persistence. The overlooked role of aerosol acidity has profound implications for virus transmission and mitigation strategies.</description><subject>Acidity</subject><subject>Aerosols</subject><subject>Air Pollution, Indoor</subject><subject>Atmospheric aerosols</subject><subject>COVID-19</subject><subject>Deactivation</subject><subject>Disease control</subject><subject>Disease transmission</subject><subject>Disease Transmission, Infectious</subject><subject>Ecotoxicology and Public Health</subject><subject>Humans</subject><subject>Hydrogen-Ion Concentration</subject><subject>Inactivation</subject><subject>Indoor environments</subject><subject>Influenza</subject><subject>Influenza A</subject><subject>Mechanical ventilation</subject><subject>Mitigation</subject><subject>Nitric acid</subject><subject>pH effects</subject><subject>Relative humidity</subject><subject>Respiratory Aerosols and Droplets</subject><subject>SARS-CoV-2</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Viral diseases</subject><subject>Virus Inactivation</subject><subject>Viruses</subject><subject>Volatile acids</subject><issn>0013-936X</issn><issn>1520-5851</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kUtLxDAUhYMoOj7W7iTgRpCOeTRN6kIYfKPgRsVdSNNEo51mTNpB_70ZZhxUcBUu-c65jwPALkZDjAg-UjoOTeyGRCPGOV8BA8wIyphgeBUMEMI0K2nxtAE2Y3xFCBGKxDrYoAWjvCjpANycf0xcUJ0Pn3Bkgo--gZOrY3j_YuDd1ITG-zdTw7PgUgG9hSMXKh9aAx9d6CO8bpXu3FR1zrfbYM2qJpqdxbsFHi7O70-vstu7y-vT0W2mcsa7rLSqzoXQea6VEYxXBc01KWtKraWqqmrGEBO50RVlVtBU1VVVckGNyC21nG6Bk7nvpK_Gptam7YJq5CS4sQqf0isnf_-07kU--6ksk5sgIhkcLAyCf-_T_eTYRW2aRrXG91ESzgpMaFGShO7_QV99H9q0XqKKnGGOME7U0ZzS6YIxGLscBiM5C0qmoORMvQgqKfZ-7rDkv5NJwOEcmCmXPf-z-wLio59f</recordid><startdate>20230110</startdate><enddate>20230110</enddate><creator>Luo, Beiping</creator><creator>Schaub, Aline</creator><creator>Glas, Irina</creator><creator>Klein, Liviana K.</creator><creator>David, Shannon C.</creator><creator>Bluvshtein, Nir</creator><creator>Violaki, Kalliopi</creator><creator>Motos, Ghislain</creator><creator>Pohl, Marie O.</creator><creator>Hugentobler, Walter</creator><creator>Nenes, Athanasios</creator><creator>Krieger, Ulrich K.</creator><creator>Stertz, Silke</creator><creator>Peter, Thomas</creator><creator>Kohn, Tamar</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7379-752X</orcidid><orcidid>https://orcid.org/0000-0002-7999-4460</orcidid><orcidid>https://orcid.org/0000-0001-9491-2892</orcidid><orcidid>https://orcid.org/0000-0003-3873-9970</orcidid><orcidid>https://orcid.org/0000-0003-4958-2657</orcidid><orcidid>https://orcid.org/0000-0002-7205-1718</orcidid><orcidid>https://orcid.org/0000-0001-6976-6360</orcidid><orcidid>https://orcid.org/0000-0003-0395-6561</orcidid><orcidid>https://orcid.org/0000-0002-1468-6678</orcidid><orcidid>https://orcid.org/0000-0003-3345-9443</orcidid></search><sort><creationdate>20230110</creationdate><title>Expiratory Aerosol pH: The Overlooked Driver of Airborne Virus Inactivation</title><author>Luo, Beiping ; Schaub, Aline ; Glas, Irina ; Klein, Liviana K. ; David, Shannon C. ; Bluvshtein, Nir ; Violaki, Kalliopi ; Motos, Ghislain ; Pohl, Marie O. ; Hugentobler, Walter ; Nenes, Athanasios ; Krieger, Ulrich K. ; Stertz, Silke ; Peter, Thomas ; Kohn, Tamar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a457t-9fad488c44cae857b634c29d33ff3abbd550584ecb35f83550dbb9783e84f3f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acidity</topic><topic>Aerosols</topic><topic>Air Pollution, Indoor</topic><topic>Atmospheric aerosols</topic><topic>COVID-19</topic><topic>Deactivation</topic><topic>Disease control</topic><topic>Disease transmission</topic><topic>Disease Transmission, Infectious</topic><topic>Ecotoxicology and Public Health</topic><topic>Humans</topic><topic>Hydrogen-Ion Concentration</topic><topic>Inactivation</topic><topic>Indoor environments</topic><topic>Influenza</topic><topic>Influenza A</topic><topic>Mechanical ventilation</topic><topic>Mitigation</topic><topic>Nitric acid</topic><topic>pH effects</topic><topic>Relative humidity</topic><topic>Respiratory Aerosols and Droplets</topic><topic>SARS-CoV-2</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Viral diseases</topic><topic>Virus Inactivation</topic><topic>Viruses</topic><topic>Volatile acids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Beiping</creatorcontrib><creatorcontrib>Schaub, Aline</creatorcontrib><creatorcontrib>Glas, Irina</creatorcontrib><creatorcontrib>Klein, Liviana K.</creatorcontrib><creatorcontrib>David, Shannon C.</creatorcontrib><creatorcontrib>Bluvshtein, Nir</creatorcontrib><creatorcontrib>Violaki, Kalliopi</creatorcontrib><creatorcontrib>Motos, Ghislain</creatorcontrib><creatorcontrib>Pohl, Marie O.</creatorcontrib><creatorcontrib>Hugentobler, Walter</creatorcontrib><creatorcontrib>Nenes, Athanasios</creatorcontrib><creatorcontrib>Krieger, Ulrich K.</creatorcontrib><creatorcontrib>Stertz, Silke</creatorcontrib><creatorcontrib>Peter, Thomas</creatorcontrib><creatorcontrib>Kohn, Tamar</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Beiping</au><au>Schaub, Aline</au><au>Glas, Irina</au><au>Klein, Liviana K.</au><au>David, Shannon C.</au><au>Bluvshtein, Nir</au><au>Violaki, Kalliopi</au><au>Motos, Ghislain</au><au>Pohl, Marie O.</au><au>Hugentobler, Walter</au><au>Nenes, Athanasios</au><au>Krieger, Ulrich K.</au><au>Stertz, Silke</au><au>Peter, Thomas</au><au>Kohn, Tamar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Expiratory Aerosol pH: The Overlooked Driver of Airborne Virus Inactivation</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2023-01-10</date><risdate>2023</risdate><volume>57</volume><issue>1</issue><spage>486</spage><epage>497</epage><pages>486-497</pages><issn>0013-936X</issn><issn>1520-5851</issn><eissn>1520-5851</eissn><abstract>Respiratory viruses, including influenza virus and SARS-CoV-2, are transmitted by the airborne route. Air filtration and ventilation mechanically reduce the concentration of airborne viruses and are necessary tools for disease mitigation. However, they ignore the potential impact of the chemical environment surrounding aerosolized viruses, which determines the aerosol pH. Atmospheric aerosol gravitates toward acidic pH, and enveloped viruses are prone to inactivation at strong acidity levels. Yet, the acidity of expiratory aerosol particles and its effect on airborne virus persistence have not been examined. Here, we combine pH-dependent inactivation rates of influenza A virus (IAV) and SARS-CoV-2 with microphysical properties of respiratory fluids using a biophysical aerosol model. We find that particles exhaled into indoor air (with relative humidity ≥ 50%) become mildly acidic (pH ∼ 4), rapidly inactivating IAV within minutes, whereas SARS-CoV-2 requires days. If indoor air is enriched with nonhazardous levels of nitric acid, aerosol pH drops by up to 2 units, decreasing 99%-inactivation times for both viruses in small aerosol particles to below 30 s. Conversely, unintentional removal of volatile acids from indoor air may elevate pH and prolong airborne virus persistence. The overlooked role of aerosol acidity has profound implications for virus transmission and mitigation strategies.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36537693</pmid><doi>10.1021/acs.est.2c05777</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7379-752X</orcidid><orcidid>https://orcid.org/0000-0002-7999-4460</orcidid><orcidid>https://orcid.org/0000-0001-9491-2892</orcidid><orcidid>https://orcid.org/0000-0003-3873-9970</orcidid><orcidid>https://orcid.org/0000-0003-4958-2657</orcidid><orcidid>https://orcid.org/0000-0002-7205-1718</orcidid><orcidid>https://orcid.org/0000-0001-6976-6360</orcidid><orcidid>https://orcid.org/0000-0003-0395-6561</orcidid><orcidid>https://orcid.org/0000-0002-1468-6678</orcidid><orcidid>https://orcid.org/0000-0003-3345-9443</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2023-01, Vol.57 (1), p.486-497
issn 0013-936X
1520-5851
1520-5851
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9835828
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Acidity
Aerosols
Air Pollution, Indoor
Atmospheric aerosols
COVID-19
Deactivation
Disease control
Disease transmission
Disease Transmission, Infectious
Ecotoxicology and Public Health
Humans
Hydrogen-Ion Concentration
Inactivation
Indoor environments
Influenza
Influenza A
Mechanical ventilation
Mitigation
Nitric acid
pH effects
Relative humidity
Respiratory Aerosols and Droplets
SARS-CoV-2
Severe acute respiratory syndrome coronavirus 2
Viral diseases
Virus Inactivation
Viruses
Volatile acids
title Expiratory Aerosol pH: The Overlooked Driver of Airborne Virus Inactivation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A14%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Expiratory%20Aerosol%20pH:%20The%20Overlooked%20Driver%20of%20Airborne%20Virus%20Inactivation&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Luo,%20Beiping&rft.date=2023-01-10&rft.volume=57&rft.issue=1&rft.spage=486&rft.epage=497&rft.pages=486-497&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.2c05777&rft_dat=%3Cproquest_pubme%3E2756123692%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a457t-9fad488c44cae857b634c29d33ff3abbd550584ecb35f83550dbb9783e84f3f73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2764517011&rft_id=info:pmid/36537693&rfr_iscdi=true