Loading…
GIPS-Mix for Accurate Identification of Isomeric Components in Glycan Mixtures Using Intelligent Group-Opting Strategy
Accurate identification of glycan structures is highly desirable as they are intimately linked to their different functions. However, glycan samples generally exist as mixtures with multiple isomeric structures, making assignment of individual glycan components very challenging, even with the aid of...
Saved in:
Published in: | Analytical chemistry (Washington) 2023-01, Vol.95 (2), p.811-819 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-a426t-1aec1d6be69833caff2cc58a2162d68d596d7e9c789a3209cf5aec65a91f2b5d3 |
container_end_page | 819 |
container_issue | 2 |
container_start_page | 811 |
container_title | Analytical chemistry (Washington) |
container_volume | 95 |
creator | Huang, Chuncui Hou, Meijie Yan, Jingyu Wang, Hui Wang, Yu Cao, Cuiyan Wang, Yaojun Gao, Huanyu Ma, Xinyue Zheng, Yi Bu, Dongbo Chai, Wengang Li, Yan Sun, Shiwei |
description | Accurate identification of glycan structures is highly desirable as they are intimately linked to their different functions. However, glycan samples generally exist as mixtures with multiple isomeric structures, making assignment of individual glycan components very challenging, even with the aid of multistage mass spectrometry (MSn). Here, we present an approach, GIPS-mix, for assignment of isomeric glycans within a mixture using an intelligent group-opting strategy. Our approach enumerates all possible combinations (groupings) of candidate glycans and opts in the best-matched glycan group(s) based on the similarity between the simulated spectra of each glycan group and the acquired experimental spectra of the mixture. In the case that a single group could not be elected, a tie break is performed by additional MSn scanning using intelligently selected precursors. With 11 standard mixtures and 6 human milk oligosaccharide fractions, we demonstrate the application of GIPS-mix in assignment of individual glycans in mixtures with high accuracy and efficiency. |
doi_str_mv | 10.1021/acs.analchem.2c02978 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9850354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2767241176</sourcerecordid><originalsourceid>FETCH-LOGICAL-a426t-1aec1d6be69833caff2cc58a2162d68d596d7e9c789a3209cf5aec65a91f2b5d3</originalsourceid><addsrcrecordid>eNp9kU9rFDEYh4Modq1-A5GAFy-zJpnJv4tQFl0HKhVqzyGbSbYpM8mYzBT325tht4t68JTD-_x-eV8eAN5itMaI4I_a5LUOujf3dlgTg4jk4hlYYUpQxYQgz8EKIVRXhCN0AV7l_IAQxgizl-CiZrThtWxW4HHbfr-tvvlf0MUEr4yZk54sbDsbJu-80ZOPAUYH2xwHm7yBmziMMZRxhj7AbX8wOsBSMM3JZniXfdjDNky27_2-UHCb4jxWN-O0DG6npX5_eA1eON1n--b0XoK7L59_bL5W1zfbdnN1XemGsKnC2hrcsZ1lUtS10c4RY6jQBDPSMdFRyTpupeFC6pogaRwtCUa1xI7saFdfgk_H3nHeDbYzZaGkezUmP-h0UFF79fck-Hu1j49KCopq2pSCD6eCFH_ONk9q8NmU43Swcc6KcMoRbRAXBX3_D_oQ51QMLRTjpMGYs0I1R8qkmHOy7rwMRmoRq4pY9SRWncSW2Ls_DzmHnkwWAB2BJX7--L-dvwFgbLVJ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2767241176</pqid></control><display><type>article</type><title>GIPS-Mix for Accurate Identification of Isomeric Components in Glycan Mixtures Using Intelligent Group-Opting Strategy</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Huang, Chuncui ; Hou, Meijie ; Yan, Jingyu ; Wang, Hui ; Wang, Yu ; Cao, Cuiyan ; Wang, Yaojun ; Gao, Huanyu ; Ma, Xinyue ; Zheng, Yi ; Bu, Dongbo ; Chai, Wengang ; Li, Yan ; Sun, Shiwei</creator><creatorcontrib>Huang, Chuncui ; Hou, Meijie ; Yan, Jingyu ; Wang, Hui ; Wang, Yu ; Cao, Cuiyan ; Wang, Yaojun ; Gao, Huanyu ; Ma, Xinyue ; Zheng, Yi ; Bu, Dongbo ; Chai, Wengang ; Li, Yan ; Sun, Shiwei</creatorcontrib><description>Accurate identification of glycan structures is highly desirable as they are intimately linked to their different functions. However, glycan samples generally exist as mixtures with multiple isomeric structures, making assignment of individual glycan components very challenging, even with the aid of multistage mass spectrometry (MSn). Here, we present an approach, GIPS-mix, for assignment of isomeric glycans within a mixture using an intelligent group-opting strategy. Our approach enumerates all possible combinations (groupings) of candidate glycans and opts in the best-matched glycan group(s) based on the similarity between the simulated spectra of each glycan group and the acquired experimental spectra of the mixture. In the case that a single group could not be elected, a tie break is performed by additional MSn scanning using intelligently selected precursors. With 11 standard mixtures and 6 human milk oligosaccharide fractions, we demonstrate the application of GIPS-mix in assignment of individual glycans in mixtures with high accuracy and efficiency.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.2c02978</identifier><identifier>PMID: 36547394</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Breast milk ; Chemistry ; Glycan ; Humans ; Isomerism ; Mass spectrometry ; Mass spectroscopy ; Milk, Human - chemistry ; Mixtures ; Oligosaccharides ; Oligosaccharides - analysis ; Polysaccharides ; Polysaccharides - chemistry ; Spectra</subject><ispartof>Analytical chemistry (Washington), 2023-01, Vol.95 (2), p.811-819</ispartof><rights>2022 The Authors. Published by American Chemical Society</rights><rights>Copyright American Chemical Society Jan 17, 2023</rights><rights>2022 The Authors. Published by American Chemical Society 2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a426t-1aec1d6be69833caff2cc58a2162d68d596d7e9c789a3209cf5aec65a91f2b5d3</cites><orcidid>0000-0002-0713-3186 ; 0000-0003-2977-5347</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36547394$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Chuncui</creatorcontrib><creatorcontrib>Hou, Meijie</creatorcontrib><creatorcontrib>Yan, Jingyu</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Cao, Cuiyan</creatorcontrib><creatorcontrib>Wang, Yaojun</creatorcontrib><creatorcontrib>Gao, Huanyu</creatorcontrib><creatorcontrib>Ma, Xinyue</creatorcontrib><creatorcontrib>Zheng, Yi</creatorcontrib><creatorcontrib>Bu, Dongbo</creatorcontrib><creatorcontrib>Chai, Wengang</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Sun, Shiwei</creatorcontrib><title>GIPS-Mix for Accurate Identification of Isomeric Components in Glycan Mixtures Using Intelligent Group-Opting Strategy</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Accurate identification of glycan structures is highly desirable as they are intimately linked to their different functions. However, glycan samples generally exist as mixtures with multiple isomeric structures, making assignment of individual glycan components very challenging, even with the aid of multistage mass spectrometry (MSn). Here, we present an approach, GIPS-mix, for assignment of isomeric glycans within a mixture using an intelligent group-opting strategy. Our approach enumerates all possible combinations (groupings) of candidate glycans and opts in the best-matched glycan group(s) based on the similarity between the simulated spectra of each glycan group and the acquired experimental spectra of the mixture. In the case that a single group could not be elected, a tie break is performed by additional MSn scanning using intelligently selected precursors. With 11 standard mixtures and 6 human milk oligosaccharide fractions, we demonstrate the application of GIPS-mix in assignment of individual glycans in mixtures with high accuracy and efficiency.</description><subject>Breast milk</subject><subject>Chemistry</subject><subject>Glycan</subject><subject>Humans</subject><subject>Isomerism</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Milk, Human - chemistry</subject><subject>Mixtures</subject><subject>Oligosaccharides</subject><subject>Oligosaccharides - analysis</subject><subject>Polysaccharides</subject><subject>Polysaccharides - chemistry</subject><subject>Spectra</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kU9rFDEYh4Modq1-A5GAFy-zJpnJv4tQFl0HKhVqzyGbSbYpM8mYzBT325tht4t68JTD-_x-eV8eAN5itMaI4I_a5LUOujf3dlgTg4jk4hlYYUpQxYQgz8EKIVRXhCN0AV7l_IAQxgizl-CiZrThtWxW4HHbfr-tvvlf0MUEr4yZk54sbDsbJu-80ZOPAUYH2xwHm7yBmziMMZRxhj7AbX8wOsBSMM3JZniXfdjDNky27_2-UHCb4jxWN-O0DG6npX5_eA1eON1n--b0XoK7L59_bL5W1zfbdnN1XemGsKnC2hrcsZ1lUtS10c4RY6jQBDPSMdFRyTpupeFC6pogaRwtCUa1xI7saFdfgk_H3nHeDbYzZaGkezUmP-h0UFF79fck-Hu1j49KCopq2pSCD6eCFH_ONk9q8NmU43Swcc6KcMoRbRAXBX3_D_oQ51QMLRTjpMGYs0I1R8qkmHOy7rwMRmoRq4pY9SRWncSW2Ls_DzmHnkwWAB2BJX7--L-dvwFgbLVJ</recordid><startdate>20230117</startdate><enddate>20230117</enddate><creator>Huang, Chuncui</creator><creator>Hou, Meijie</creator><creator>Yan, Jingyu</creator><creator>Wang, Hui</creator><creator>Wang, Yu</creator><creator>Cao, Cuiyan</creator><creator>Wang, Yaojun</creator><creator>Gao, Huanyu</creator><creator>Ma, Xinyue</creator><creator>Zheng, Yi</creator><creator>Bu, Dongbo</creator><creator>Chai, Wengang</creator><creator>Li, Yan</creator><creator>Sun, Shiwei</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0713-3186</orcidid><orcidid>https://orcid.org/0000-0003-2977-5347</orcidid></search><sort><creationdate>20230117</creationdate><title>GIPS-Mix for Accurate Identification of Isomeric Components in Glycan Mixtures Using Intelligent Group-Opting Strategy</title><author>Huang, Chuncui ; Hou, Meijie ; Yan, Jingyu ; Wang, Hui ; Wang, Yu ; Cao, Cuiyan ; Wang, Yaojun ; Gao, Huanyu ; Ma, Xinyue ; Zheng, Yi ; Bu, Dongbo ; Chai, Wengang ; Li, Yan ; Sun, Shiwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a426t-1aec1d6be69833caff2cc58a2162d68d596d7e9c789a3209cf5aec65a91f2b5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Breast milk</topic><topic>Chemistry</topic><topic>Glycan</topic><topic>Humans</topic><topic>Isomerism</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Milk, Human - chemistry</topic><topic>Mixtures</topic><topic>Oligosaccharides</topic><topic>Oligosaccharides - analysis</topic><topic>Polysaccharides</topic><topic>Polysaccharides - chemistry</topic><topic>Spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Chuncui</creatorcontrib><creatorcontrib>Hou, Meijie</creatorcontrib><creatorcontrib>Yan, Jingyu</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Cao, Cuiyan</creatorcontrib><creatorcontrib>Wang, Yaojun</creatorcontrib><creatorcontrib>Gao, Huanyu</creatorcontrib><creatorcontrib>Ma, Xinyue</creatorcontrib><creatorcontrib>Zheng, Yi</creatorcontrib><creatorcontrib>Bu, Dongbo</creatorcontrib><creatorcontrib>Chai, Wengang</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Sun, Shiwei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Chuncui</au><au>Hou, Meijie</au><au>Yan, Jingyu</au><au>Wang, Hui</au><au>Wang, Yu</au><au>Cao, Cuiyan</au><au>Wang, Yaojun</au><au>Gao, Huanyu</au><au>Ma, Xinyue</au><au>Zheng, Yi</au><au>Bu, Dongbo</au><au>Chai, Wengang</au><au>Li, Yan</au><au>Sun, Shiwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GIPS-Mix for Accurate Identification of Isomeric Components in Glycan Mixtures Using Intelligent Group-Opting Strategy</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2023-01-17</date><risdate>2023</risdate><volume>95</volume><issue>2</issue><spage>811</spage><epage>819</epage><pages>811-819</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>Accurate identification of glycan structures is highly desirable as they are intimately linked to their different functions. However, glycan samples generally exist as mixtures with multiple isomeric structures, making assignment of individual glycan components very challenging, even with the aid of multistage mass spectrometry (MSn). Here, we present an approach, GIPS-mix, for assignment of isomeric glycans within a mixture using an intelligent group-opting strategy. Our approach enumerates all possible combinations (groupings) of candidate glycans and opts in the best-matched glycan group(s) based on the similarity between the simulated spectra of each glycan group and the acquired experimental spectra of the mixture. In the case that a single group could not be elected, a tie break is performed by additional MSn scanning using intelligently selected precursors. With 11 standard mixtures and 6 human milk oligosaccharide fractions, we demonstrate the application of GIPS-mix in assignment of individual glycans in mixtures with high accuracy and efficiency.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36547394</pmid><doi>10.1021/acs.analchem.2c02978</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0713-3186</orcidid><orcidid>https://orcid.org/0000-0003-2977-5347</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2023-01, Vol.95 (2), p.811-819 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9850354 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Breast milk Chemistry Glycan Humans Isomerism Mass spectrometry Mass spectroscopy Milk, Human - chemistry Mixtures Oligosaccharides Oligosaccharides - analysis Polysaccharides Polysaccharides - chemistry Spectra |
title | GIPS-Mix for Accurate Identification of Isomeric Components in Glycan Mixtures Using Intelligent Group-Opting Strategy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A13%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GIPS-Mix%20for%20Accurate%20Identification%20of%20Isomeric%20Components%20in%20Glycan%20Mixtures%20Using%20Intelligent%20Group-Opting%20Strategy&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Huang,%20Chuncui&rft.date=2023-01-17&rft.volume=95&rft.issue=2&rft.spage=811&rft.epage=819&rft.pages=811-819&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.2c02978&rft_dat=%3Cproquest_pubme%3E2767241176%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a426t-1aec1d6be69833caff2cc58a2162d68d596d7e9c789a3209cf5aec65a91f2b5d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2767241176&rft_id=info:pmid/36547394&rfr_iscdi=true |