Loading…

Fog-cloud architecture-driven Internet of Medical Things framework for healthcare monitoring

The new coronavirus disease (COVID-19) has increased the need for new technologies such as the Internet of Medical Things (IoMT), Wireless Body Area Networks (WBANs), and cloud computing in the health sector as well as in many areas. These technologies have also made it possible for billions of devi...

Full description

Saved in:
Bibliographic Details
Published in:Medical & biological engineering & computing 2023-05, Vol.61 (5), p.1133-1147
Main Authors: Yıldırım, Emre, Cicioğlu, Murtaza, Çalhan, Ali
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The new coronavirus disease (COVID-19) has increased the need for new technologies such as the Internet of Medical Things (IoMT), Wireless Body Area Networks (WBANs), and cloud computing in the health sector as well as in many areas. These technologies have also made it possible for billions of devices to connect to the internet and communicate with each other. In this study, an Internet of Medical Things (IoMT) framework consisting of Wireless Body Area Networks (WBANs) has been designed and the health big data from WBANs have been analyzed using fog and cloud computing technologies. Fog computing is used for fast and easy analysis, and cloud computing is used for time-consuming and complex analysis. The proposed IoMT framework is presented with a diabetes prediction scenario. The diabetes prediction process is carried out on fog with fuzzy logic decision-making and is achieved on cloud with support vector machine (SVM), random forest (RF), and artificial neural network (ANN) as machine learning algorithms. The dataset produced in WBANs is used for big data analysis in the scenario for both fuzzy logic and machine learning algorithm. The fuzzy logic gives 64% accuracy performance in fog and SVM, RF, and ANN have 89.5%, 88.4%, and 87.2% accuracy performance respectively in the cloud for diabetes prediction. In addition, the throughput and delay results of heterogeneous nodes with different priorities in the WBAN scenario created using the IEEE 802.15.6 standard and AODV routing protocol have been also analyzed. Graphical abstract Fog-Cloud architecture-driven for IoMT networks • An IoMT framework is designed with important components and functions such as fog and cloud node capabilities. •Real-time data has been obtained from WBANs in Riverbed Modeler for a more realistic performance analysis of IoMT. •Fuzzy logic and machine learning algorithms (RF, SVM, and ANN) are used for diabetes predictions. •Intra and Inter-WBAN communications (IEEE 802.15.6 standard) are modeled as essential components of the IoMT framework with all functions.
ISSN:0140-0118
1741-0444
DOI:10.1007/s11517-023-02776-4