Loading…
Local Corrosion Behaviors in the Coarse-Grained Heat-Affected Zone in a Newly Developed Zr-Ti-Al-RE Deoxidized High-Strength Low-Alloy Steel
Oxide metallurgy technology can improve the microstructure of a coarse-grained heat-affected zone (CGHAZ) but introduces extra inclusions. Local corrosion behavior of the CGHAZ of a Zr-Ti-Al-RE deoxidized steel was investigated in this work using theoretical calculations and experimental verificatio...
Saved in:
Published in: | Materials 2023-01, Vol.16 (2), p.876 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Oxide metallurgy technology can improve the microstructure of a coarse-grained heat-affected zone (CGHAZ) but introduces extra inclusions. Local corrosion behavior of the CGHAZ of a Zr-Ti-Al-RE deoxidized steel was investigated in this work using theoretical calculations and experimental verification. The modified inclusions have a (Zr-Mg-Al-Ca-RE)O
core claded by a CaS and TiN shell. CaS dissolves first, followed by the oxide core, leaving TiN parts. This confirms that the addition of rare earth can reduce lattice distortion and prevent a galvanic couple between the inclusions and the matrix, while the chemical dissolution of CaS causes localized acidification, resulting in the pitting corrosion initiation. |
---|---|
ISSN: | 1996-1944 1996-1944 |
DOI: | 10.3390/ma16020876 |