Loading…

Diffusion weighted hyperpolarized 129Xe MRI of the lung with 2D and 3D (FLORET) spiral

Purpose To enable efficient hyperpolarized 129Xe diffusion imaging using 2D and 3D (Fermat Looped, ORthogonally Encoded Trajectories, FLORET) spiral sequences and demonstrate that 129Xe ADCs obtained using these sequences are comparable to those obtained using a conventional, 2D gradient‐recalled ec...

Full description

Saved in:
Bibliographic Details
Published in:Magnetic resonance in medicine 2023-04, Vol.89 (4), p.1342-1356
Main Authors: Bdaiwi, Abdullah S., Willmering, Matthew M., Wang, Hui, Cleveland, Zackary I.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1356
container_issue 4
container_start_page 1342
container_title Magnetic resonance in medicine
container_volume 89
creator Bdaiwi, Abdullah S.
Willmering, Matthew M.
Wang, Hui
Cleveland, Zackary I.
description Purpose To enable efficient hyperpolarized 129Xe diffusion imaging using 2D and 3D (Fermat Looped, ORthogonally Encoded Trajectories, FLORET) spiral sequences and demonstrate that 129Xe ADCs obtained using these sequences are comparable to those obtained using a conventional, 2D gradient‐recalled echo (GRE) sequence. Theory and Methods Diffusion‐weighted 129Xe MRI (b‐values = 0, 7.5, 15 s/cm2) was performed in four healthy volunteers and one subject with lymphangioleiomyomatosis using slice‐selective 2D‐GRE (scan time = 15 s), slice‐selective 2D‐Spiral (4 s), and 3D‐FLORET (16 s) sequences. Experimental SNRs from b‐value = 0 images (SNR0EX$$ SNR{0}_{EX} $$) and mean ADC values were compared across sequences. In two healthy subjects, a second b = 0 image was acquired using the 2D‐Spiral sequence to map flip angle and correct RF‐induced, hyperpolarized signal decay at the voxel level, thus improving regional ADC estimates. Results Diffusion‐weighted images from spiral sequences displayed image quality comparable to 2D‐GRE and produced sufficient SNR0EX$$ SNR{0}_{EX} $$ (16.8 ± 3.8 for 2D‐GRE, 21.2 ± 3.5 for 2D‐Spiral, 20.4 ± 3.5 for FLORET) to accurately calculate ADC. Whole‐lung means and SDs of ADC obtained via spiral were not significantly different (P > 0.54) from those obtained via 2D‐GRE. Finally, 2D‐Spiral images were corrected for signal decay, which resulted in a whole‐lung mean ADC decrease of ˜15%, relative to uncorrected images. Conclusions Relative to GRE, efficient spiral sequences allow 129Xe diffusion images to be acquired with isotropic lung coverage (3D), higher SNR$$ SNR $$(2D and 3D), and three‐fold faster (2D) within a single breath‐hold. In turn, shortened breath‐holds enable flip‐angle mapping, and thus, allow RF‐induced signal decay to be corrected, increasing ADC accuracy.
doi_str_mv 10.1002/mrm.29518
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9892235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2770584723</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2438-ea55dbc492eceef0ad806bd8cde129005de7fb02e77f1848df3a1b59199096573</originalsourceid><addsrcrecordid>eNpVkEtLw0AUhQdRbK0u_AcDbnSROo9MJ7MRpA8ttBRKFXfDJHPTTEmTmIel_npjWwRX917u4TuHg9AtJX1KCHvclts-U4IGZ6hLBWMeE8o_R10ifeJxqvwOuqqqDSFEKelfog4fcMGk4l30PnJx3FQuz_AO3DqpweJkX0BZ5Kkp3Xd7UqY-AM-XU5zHuE4Ap022xjtXJ5iNsMks5iN8P5ktluPVA64KV5r0Gl3EJq3g5jR76G0yXg1fvdniZTp8nnkF83nggRHChpGvGEQAMTE2IIPQBpGF1pUQYUHGIWEgZUwDP7AxNzQUiipF1EBI3kNPR27RhFuwEWR1666L0m1Nude5cfr_J3OJXudfWgWKMS5awN0JUOafDVS13uRNmbWZNZOSiMCXjLeqx6Nq51LY_-Ep0b_967Z_fehfz5fzw8J_AG-Gd8E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2770584723</pqid></control><display><type>article</type><title>Diffusion weighted hyperpolarized 129Xe MRI of the lung with 2D and 3D (FLORET) spiral</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Bdaiwi, Abdullah S. ; Willmering, Matthew M. ; Wang, Hui ; Cleveland, Zackary I.</creator><creatorcontrib>Bdaiwi, Abdullah S. ; Willmering, Matthew M. ; Wang, Hui ; Cleveland, Zackary I.</creatorcontrib><description>Purpose To enable efficient hyperpolarized 129Xe diffusion imaging using 2D and 3D (Fermat Looped, ORthogonally Encoded Trajectories, FLORET) spiral sequences and demonstrate that 129Xe ADCs obtained using these sequences are comparable to those obtained using a conventional, 2D gradient‐recalled echo (GRE) sequence. Theory and Methods Diffusion‐weighted 129Xe MRI (b‐values = 0, 7.5, 15 s/cm2) was performed in four healthy volunteers and one subject with lymphangioleiomyomatosis using slice‐selective 2D‐GRE (scan time = 15 s), slice‐selective 2D‐Spiral (4 s), and 3D‐FLORET (16 s) sequences. Experimental SNRs from b‐value = 0 images (SNR0EX$$ SNR{0}_{EX} $$) and mean ADC values were compared across sequences. In two healthy subjects, a second b = 0 image was acquired using the 2D‐Spiral sequence to map flip angle and correct RF‐induced, hyperpolarized signal decay at the voxel level, thus improving regional ADC estimates. Results Diffusion‐weighted images from spiral sequences displayed image quality comparable to 2D‐GRE and produced sufficient SNR0EX$$ SNR{0}_{EX} $$ (16.8 ± 3.8 for 2D‐GRE, 21.2 ± 3.5 for 2D‐Spiral, 20.4 ± 3.5 for FLORET) to accurately calculate ADC. Whole‐lung means and SDs of ADC obtained via spiral were not significantly different (P &gt; 0.54) from those obtained via 2D‐GRE. Finally, 2D‐Spiral images were corrected for signal decay, which resulted in a whole‐lung mean ADC decrease of ˜15%, relative to uncorrected images. Conclusions Relative to GRE, efficient spiral sequences allow 129Xe diffusion images to be acquired with isotropic lung coverage (3D), higher SNR$$ SNR $$(2D and 3D), and three‐fold faster (2D) within a single breath‐hold. In turn, shortened breath‐holds enable flip‐angle mapping, and thus, allow RF‐induced signal decay to be corrected, increasing ADC accuracy.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.29518</identifier><identifier>PMID: 36352793</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>ADC ; Decay ; Diffusion ; FLORET ; GRE ; hyperpolarized 129Xe ; Image acquisition ; Image quality ; Lungs ; Magnetic resonance imaging ; spiral ; s—Imaging Methodology ; Xenon 129</subject><ispartof>Magnetic resonance in medicine, 2023-04, Vol.89 (4), p.1342-1356</ispartof><rights>2022 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-6195-9061 ; 0000-0002-4356-9622 ; 0000-0002-0318-1316 ; 0000-0001-7835-7032</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids></links><search><creatorcontrib>Bdaiwi, Abdullah S.</creatorcontrib><creatorcontrib>Willmering, Matthew M.</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Cleveland, Zackary I.</creatorcontrib><title>Diffusion weighted hyperpolarized 129Xe MRI of the lung with 2D and 3D (FLORET) spiral</title><title>Magnetic resonance in medicine</title><description>Purpose To enable efficient hyperpolarized 129Xe diffusion imaging using 2D and 3D (Fermat Looped, ORthogonally Encoded Trajectories, FLORET) spiral sequences and demonstrate that 129Xe ADCs obtained using these sequences are comparable to those obtained using a conventional, 2D gradient‐recalled echo (GRE) sequence. Theory and Methods Diffusion‐weighted 129Xe MRI (b‐values = 0, 7.5, 15 s/cm2) was performed in four healthy volunteers and one subject with lymphangioleiomyomatosis using slice‐selective 2D‐GRE (scan time = 15 s), slice‐selective 2D‐Spiral (4 s), and 3D‐FLORET (16 s) sequences. Experimental SNRs from b‐value = 0 images (SNR0EX$$ SNR{0}_{EX} $$) and mean ADC values were compared across sequences. In two healthy subjects, a second b = 0 image was acquired using the 2D‐Spiral sequence to map flip angle and correct RF‐induced, hyperpolarized signal decay at the voxel level, thus improving regional ADC estimates. Results Diffusion‐weighted images from spiral sequences displayed image quality comparable to 2D‐GRE and produced sufficient SNR0EX$$ SNR{0}_{EX} $$ (16.8 ± 3.8 for 2D‐GRE, 21.2 ± 3.5 for 2D‐Spiral, 20.4 ± 3.5 for FLORET) to accurately calculate ADC. Whole‐lung means and SDs of ADC obtained via spiral were not significantly different (P &gt; 0.54) from those obtained via 2D‐GRE. Finally, 2D‐Spiral images were corrected for signal decay, which resulted in a whole‐lung mean ADC decrease of ˜15%, relative to uncorrected images. Conclusions Relative to GRE, efficient spiral sequences allow 129Xe diffusion images to be acquired with isotropic lung coverage (3D), higher SNR$$ SNR $$(2D and 3D), and three‐fold faster (2D) within a single breath‐hold. In turn, shortened breath‐holds enable flip‐angle mapping, and thus, allow RF‐induced signal decay to be corrected, increasing ADC accuracy.</description><subject>ADC</subject><subject>Decay</subject><subject>Diffusion</subject><subject>FLORET</subject><subject>GRE</subject><subject>hyperpolarized 129Xe</subject><subject>Image acquisition</subject><subject>Image quality</subject><subject>Lungs</subject><subject>Magnetic resonance imaging</subject><subject>spiral</subject><subject>s—Imaging Methodology</subject><subject>Xenon 129</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNpVkEtLw0AUhQdRbK0u_AcDbnSROo9MJ7MRpA8ttBRKFXfDJHPTTEmTmIel_npjWwRX917u4TuHg9AtJX1KCHvclts-U4IGZ6hLBWMeE8o_R10ifeJxqvwOuqqqDSFEKelfog4fcMGk4l30PnJx3FQuz_AO3DqpweJkX0BZ5Kkp3Xd7UqY-AM-XU5zHuE4Ap022xjtXJ5iNsMks5iN8P5ktluPVA64KV5r0Gl3EJq3g5jR76G0yXg1fvdniZTp8nnkF83nggRHChpGvGEQAMTE2IIPQBpGF1pUQYUHGIWEgZUwDP7AxNzQUiipF1EBI3kNPR27RhFuwEWR1666L0m1Nude5cfr_J3OJXudfWgWKMS5awN0JUOafDVS13uRNmbWZNZOSiMCXjLeqx6Nq51LY_-Ep0b_967Z_fehfz5fzw8J_AG-Gd8E</recordid><startdate>202304</startdate><enddate>202304</enddate><creator>Bdaiwi, Abdullah S.</creator><creator>Willmering, Matthew M.</creator><creator>Wang, Hui</creator><creator>Cleveland, Zackary I.</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6195-9061</orcidid><orcidid>https://orcid.org/0000-0002-4356-9622</orcidid><orcidid>https://orcid.org/0000-0002-0318-1316</orcidid><orcidid>https://orcid.org/0000-0001-7835-7032</orcidid></search><sort><creationdate>202304</creationdate><title>Diffusion weighted hyperpolarized 129Xe MRI of the lung with 2D and 3D (FLORET) spiral</title><author>Bdaiwi, Abdullah S. ; Willmering, Matthew M. ; Wang, Hui ; Cleveland, Zackary I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2438-ea55dbc492eceef0ad806bd8cde129005de7fb02e77f1848df3a1b59199096573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>ADC</topic><topic>Decay</topic><topic>Diffusion</topic><topic>FLORET</topic><topic>GRE</topic><topic>hyperpolarized 129Xe</topic><topic>Image acquisition</topic><topic>Image quality</topic><topic>Lungs</topic><topic>Magnetic resonance imaging</topic><topic>spiral</topic><topic>s—Imaging Methodology</topic><topic>Xenon 129</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bdaiwi, Abdullah S.</creatorcontrib><creatorcontrib>Willmering, Matthew M.</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Cleveland, Zackary I.</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>Wiley Online Library Free Content</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bdaiwi, Abdullah S.</au><au>Willmering, Matthew M.</au><au>Wang, Hui</au><au>Cleveland, Zackary I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffusion weighted hyperpolarized 129Xe MRI of the lung with 2D and 3D (FLORET) spiral</atitle><jtitle>Magnetic resonance in medicine</jtitle><date>2023-04</date><risdate>2023</risdate><volume>89</volume><issue>4</issue><spage>1342</spage><epage>1356</epage><pages>1342-1356</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><abstract>Purpose To enable efficient hyperpolarized 129Xe diffusion imaging using 2D and 3D (Fermat Looped, ORthogonally Encoded Trajectories, FLORET) spiral sequences and demonstrate that 129Xe ADCs obtained using these sequences are comparable to those obtained using a conventional, 2D gradient‐recalled echo (GRE) sequence. Theory and Methods Diffusion‐weighted 129Xe MRI (b‐values = 0, 7.5, 15 s/cm2) was performed in four healthy volunteers and one subject with lymphangioleiomyomatosis using slice‐selective 2D‐GRE (scan time = 15 s), slice‐selective 2D‐Spiral (4 s), and 3D‐FLORET (16 s) sequences. Experimental SNRs from b‐value = 0 images (SNR0EX$$ SNR{0}_{EX} $$) and mean ADC values were compared across sequences. In two healthy subjects, a second b = 0 image was acquired using the 2D‐Spiral sequence to map flip angle and correct RF‐induced, hyperpolarized signal decay at the voxel level, thus improving regional ADC estimates. Results Diffusion‐weighted images from spiral sequences displayed image quality comparable to 2D‐GRE and produced sufficient SNR0EX$$ SNR{0}_{EX} $$ (16.8 ± 3.8 for 2D‐GRE, 21.2 ± 3.5 for 2D‐Spiral, 20.4 ± 3.5 for FLORET) to accurately calculate ADC. Whole‐lung means and SDs of ADC obtained via spiral were not significantly different (P &gt; 0.54) from those obtained via 2D‐GRE. Finally, 2D‐Spiral images were corrected for signal decay, which resulted in a whole‐lung mean ADC decrease of ˜15%, relative to uncorrected images. Conclusions Relative to GRE, efficient spiral sequences allow 129Xe diffusion images to be acquired with isotropic lung coverage (3D), higher SNR$$ SNR $$(2D and 3D), and three‐fold faster (2D) within a single breath‐hold. In turn, shortened breath‐holds enable flip‐angle mapping, and thus, allow RF‐induced signal decay to be corrected, increasing ADC accuracy.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36352793</pmid><doi>10.1002/mrm.29518</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-6195-9061</orcidid><orcidid>https://orcid.org/0000-0002-4356-9622</orcidid><orcidid>https://orcid.org/0000-0002-0318-1316</orcidid><orcidid>https://orcid.org/0000-0001-7835-7032</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0740-3194
ispartof Magnetic resonance in medicine, 2023-04, Vol.89 (4), p.1342-1356
issn 0740-3194
1522-2594
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9892235
source Wiley-Blackwell Read & Publish Collection
subjects ADC
Decay
Diffusion
FLORET
GRE
hyperpolarized 129Xe
Image acquisition
Image quality
Lungs
Magnetic resonance imaging
spiral
s—Imaging Methodology
Xenon 129
title Diffusion weighted hyperpolarized 129Xe MRI of the lung with 2D and 3D (FLORET) spiral
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A16%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffusion%20weighted%20hyperpolarized%20129Xe%20MRI%20of%20the%20lung%20with%202D%20and%203D%20(FLORET)%20spiral&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Bdaiwi,%20Abdullah%20S.&rft.date=2023-04&rft.volume=89&rft.issue=4&rft.spage=1342&rft.epage=1356&rft.pages=1342-1356&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.29518&rft_dat=%3Cproquest_pubme%3E2770584723%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2438-ea55dbc492eceef0ad806bd8cde129005de7fb02e77f1848df3a1b59199096573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2770584723&rft_id=info:pmid/36352793&rfr_iscdi=true