Loading…
Influence of storage and buffer composition on the mechanical behavior of flowing red blood cells
On-chip study of blood flow has emerged as a powerful tool to assess the contribution of each component of blood to its overall function. Blood has indeed many functions, from gas and nutrient transport to immune response and thermal regulation. Red blood cells play a central role therein, in partic...
Saved in:
Published in: | Biophysical journal 2023-01, Vol.122 (2), p.360-373 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c485t-14c065ee265e0f3a639c56f251a528d343f896bc6f1093fc6f18b878ebcaa4853 |
---|---|
cites | cdi_FETCH-LOGICAL-c485t-14c065ee265e0f3a639c56f251a528d343f896bc6f1093fc6f18b878ebcaa4853 |
container_end_page | 373 |
container_issue | 2 |
container_start_page | 360 |
container_title | Biophysical journal |
container_volume | 122 |
creator | Merlo, Adlan Losserand, Sylvain Yaya, François Connes, Philippe Faivre, Magalie Lorthois, Sylvie Minetti, Christophe Nader, Elie Podgorski, Thomas Renoux, Céline Coupier, Gwennou Franceschini, Emilie |
description | On-chip study of blood flow has emerged as a powerful tool to assess the contribution of each component of blood to its overall function. Blood has indeed many functions, from gas and nutrient transport to immune response and thermal regulation. Red blood cells play a central role therein, in particular through their specific mechanical properties, which directly influence pressure regulation, oxygen perfusion, or platelet and white cell segregation toward endothelial walls. As the bloom of in-vitro studies has led to the apparition of various storage and sample preparation protocols, we address the question of the robustness of the results involving cell mechanical behavior against this diversity. The effects of three conservation media (EDTA, citrate, and glucose-albumin-sodium-phosphate) and storage time on the red blood cell mechanical behavior are assessed under different flow conditions: cell deformability by ektacytometry, shape recovery of cells flowing out of a microfluidic constriction, and cell-flipping dynamics under shear flow. The impact of buffer solutions (phosphate-buffered saline and density-matched suspension using iodixanol/Optiprep) are also studied by investigating individual cell-flipping dynamics, relative viscosity of cell suspensions, and cell structuration under Poiseuille flow. Our results reveal that storing blood samples up to 7 days after withdrawal and suspending them in adequate density-matched buffer solutions has, in most experiments, a moderate effect on the overall mechanical response, with a possible rapid evolution in the first 3 days after sample collection. |
doi_str_mv | 10.1016/j.bpj.2022.12.005 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9892622</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349522038930</els_id><sourcerecordid>2753302482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-14c065ee265e0f3a639c56f251a528d343f896bc6f1093fc6f18b878ebcaa4853</originalsourceid><addsrcrecordid>eNp9kVGL1DAUhYMo7uzqD_BF8qgPrTdJk2kRhGVx3YUBX_Q5pOnNNEPbjEk7i__elFkX9UEIuZB7zhfuPYS8YVAyYOrDoWyPh5ID5yXjJYB8RjZMVrwAqNVzsgEAVYiqkRfkMqUDAOMS2EtyIVS1VU0jNsTcT25YcLJIg6NpDtHskZqpo-3iHEZqw3gMyc8-TDSfuUc6ou3N5K0ZaIu9OfkQV7MbwoOf9jRiNg8hdNTiMKRX5IUzQ8LXj_WKfL_9_O3mrth9_XJ_c70rbFXLuWCVBSUReb7ACaNEY6VyXDIjed2JSri6Ua1VjkEj3Frrtt7W2FpjMkFckU9n7nFpR-wsTnM0gz5GP5r4Uwfj9d-dyfd6H066qRuuOM-A92dA_4_t7nqn1zcQjaig4ieWte8eP4vhx4Jp1qNP67hmwrAkzbdSCOBVvWLZWWpjSCmie2Iz0GuM-qBzjHqNUTOuc4zZ8_bPWZ4cv3PLgo9nAeaNnjxGnaxfU-x8RDvrLvj_4H8BjNCuVw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2753302482</pqid></control><display><type>article</type><title>Influence of storage and buffer composition on the mechanical behavior of flowing red blood cells</title><source>PubMed Central</source><creator>Merlo, Adlan ; Losserand, Sylvain ; Yaya, François ; Connes, Philippe ; Faivre, Magalie ; Lorthois, Sylvie ; Minetti, Christophe ; Nader, Elie ; Podgorski, Thomas ; Renoux, Céline ; Coupier, Gwennou ; Franceschini, Emilie</creator><creatorcontrib>Merlo, Adlan ; Losserand, Sylvain ; Yaya, François ; Connes, Philippe ; Faivre, Magalie ; Lorthois, Sylvie ; Minetti, Christophe ; Nader, Elie ; Podgorski, Thomas ; Renoux, Céline ; Coupier, Gwennou ; Franceschini, Emilie</creatorcontrib><description>On-chip study of blood flow has emerged as a powerful tool to assess the contribution of each component of blood to its overall function. Blood has indeed many functions, from gas and nutrient transport to immune response and thermal regulation. Red blood cells play a central role therein, in particular through their specific mechanical properties, which directly influence pressure regulation, oxygen perfusion, or platelet and white cell segregation toward endothelial walls. As the bloom of in-vitro studies has led to the apparition of various storage and sample preparation protocols, we address the question of the robustness of the results involving cell mechanical behavior against this diversity. The effects of three conservation media (EDTA, citrate, and glucose-albumin-sodium-phosphate) and storage time on the red blood cell mechanical behavior are assessed under different flow conditions: cell deformability by ektacytometry, shape recovery of cells flowing out of a microfluidic constriction, and cell-flipping dynamics under shear flow. The impact of buffer solutions (phosphate-buffered saline and density-matched suspension using iodixanol/Optiprep) are also studied by investigating individual cell-flipping dynamics, relative viscosity of cell suspensions, and cell structuration under Poiseuille flow. Our results reveal that storing blood samples up to 7 days after withdrawal and suspending them in adequate density-matched buffer solutions has, in most experiments, a moderate effect on the overall mechanical response, with a possible rapid evolution in the first 3 days after sample collection.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2022.12.005</identifier><identifier>PMID: 36476993</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Biomechanics ; Blood Viscosity ; Erythrocyte Deformability - physiology ; Erythrocytes - physiology ; Fluid mechanics ; Mechanics ; Microfluidics ; Physics ; Viscosity</subject><ispartof>Biophysical journal, 2023-01, Vol.122 (2), p.360-373</ispartof><rights>2022 Biophysical Society</rights><rights>Copyright © 2022 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>Attribution</rights><rights>2022 Biophysical Society. 2022 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-14c065ee265e0f3a639c56f251a528d343f896bc6f1093fc6f18b878ebcaa4853</citedby><cites>FETCH-LOGICAL-c485t-14c065ee265e0f3a639c56f251a528d343f896bc6f1093fc6f18b878ebcaa4853</cites><orcidid>0000-0001-5010-4148 ; 0000-0002-9232-0268 ; 0000-0002-7067-9747 ; 0000-0002-6054-2456 ; 0000-0001-6469-9170 ; 0000-0002-0711-3695</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9892622/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9892622/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36476993$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03934042$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Merlo, Adlan</creatorcontrib><creatorcontrib>Losserand, Sylvain</creatorcontrib><creatorcontrib>Yaya, François</creatorcontrib><creatorcontrib>Connes, Philippe</creatorcontrib><creatorcontrib>Faivre, Magalie</creatorcontrib><creatorcontrib>Lorthois, Sylvie</creatorcontrib><creatorcontrib>Minetti, Christophe</creatorcontrib><creatorcontrib>Nader, Elie</creatorcontrib><creatorcontrib>Podgorski, Thomas</creatorcontrib><creatorcontrib>Renoux, Céline</creatorcontrib><creatorcontrib>Coupier, Gwennou</creatorcontrib><creatorcontrib>Franceschini, Emilie</creatorcontrib><title>Influence of storage and buffer composition on the mechanical behavior of flowing red blood cells</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>On-chip study of blood flow has emerged as a powerful tool to assess the contribution of each component of blood to its overall function. Blood has indeed many functions, from gas and nutrient transport to immune response and thermal regulation. Red blood cells play a central role therein, in particular through their specific mechanical properties, which directly influence pressure regulation, oxygen perfusion, or platelet and white cell segregation toward endothelial walls. As the bloom of in-vitro studies has led to the apparition of various storage and sample preparation protocols, we address the question of the robustness of the results involving cell mechanical behavior against this diversity. The effects of three conservation media (EDTA, citrate, and glucose-albumin-sodium-phosphate) and storage time on the red blood cell mechanical behavior are assessed under different flow conditions: cell deformability by ektacytometry, shape recovery of cells flowing out of a microfluidic constriction, and cell-flipping dynamics under shear flow. The impact of buffer solutions (phosphate-buffered saline and density-matched suspension using iodixanol/Optiprep) are also studied by investigating individual cell-flipping dynamics, relative viscosity of cell suspensions, and cell structuration under Poiseuille flow. Our results reveal that storing blood samples up to 7 days after withdrawal and suspending them in adequate density-matched buffer solutions has, in most experiments, a moderate effect on the overall mechanical response, with a possible rapid evolution in the first 3 days after sample collection.</description><subject>Biomechanics</subject><subject>Blood Viscosity</subject><subject>Erythrocyte Deformability - physiology</subject><subject>Erythrocytes - physiology</subject><subject>Fluid mechanics</subject><subject>Mechanics</subject><subject>Microfluidics</subject><subject>Physics</subject><subject>Viscosity</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kVGL1DAUhYMo7uzqD_BF8qgPrTdJk2kRhGVx3YUBX_Q5pOnNNEPbjEk7i__elFkX9UEIuZB7zhfuPYS8YVAyYOrDoWyPh5ID5yXjJYB8RjZMVrwAqNVzsgEAVYiqkRfkMqUDAOMS2EtyIVS1VU0jNsTcT25YcLJIg6NpDtHskZqpo-3iHEZqw3gMyc8-TDSfuUc6ou3N5K0ZaIu9OfkQV7MbwoOf9jRiNg8hdNTiMKRX5IUzQ8LXj_WKfL_9_O3mrth9_XJ_c70rbFXLuWCVBSUReb7ACaNEY6VyXDIjed2JSri6Ua1VjkEj3Frrtt7W2FpjMkFckU9n7nFpR-wsTnM0gz5GP5r4Uwfj9d-dyfd6H066qRuuOM-A92dA_4_t7nqn1zcQjaig4ieWte8eP4vhx4Jp1qNP67hmwrAkzbdSCOBVvWLZWWpjSCmie2Iz0GuM-qBzjHqNUTOuc4zZ8_bPWZ4cv3PLgo9nAeaNnjxGnaxfU-x8RDvrLvj_4H8BjNCuVw</recordid><startdate>20230117</startdate><enddate>20230117</enddate><creator>Merlo, Adlan</creator><creator>Losserand, Sylvain</creator><creator>Yaya, François</creator><creator>Connes, Philippe</creator><creator>Faivre, Magalie</creator><creator>Lorthois, Sylvie</creator><creator>Minetti, Christophe</creator><creator>Nader, Elie</creator><creator>Podgorski, Thomas</creator><creator>Renoux, Céline</creator><creator>Coupier, Gwennou</creator><creator>Franceschini, Emilie</creator><general>Elsevier Inc</general><general>Biophysical Society</general><general>The Biophysical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5010-4148</orcidid><orcidid>https://orcid.org/0000-0002-9232-0268</orcidid><orcidid>https://orcid.org/0000-0002-7067-9747</orcidid><orcidid>https://orcid.org/0000-0002-6054-2456</orcidid><orcidid>https://orcid.org/0000-0001-6469-9170</orcidid><orcidid>https://orcid.org/0000-0002-0711-3695</orcidid></search><sort><creationdate>20230117</creationdate><title>Influence of storage and buffer composition on the mechanical behavior of flowing red blood cells</title><author>Merlo, Adlan ; Losserand, Sylvain ; Yaya, François ; Connes, Philippe ; Faivre, Magalie ; Lorthois, Sylvie ; Minetti, Christophe ; Nader, Elie ; Podgorski, Thomas ; Renoux, Céline ; Coupier, Gwennou ; Franceschini, Emilie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-14c065ee265e0f3a639c56f251a528d343f896bc6f1093fc6f18b878ebcaa4853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biomechanics</topic><topic>Blood Viscosity</topic><topic>Erythrocyte Deformability - physiology</topic><topic>Erythrocytes - physiology</topic><topic>Fluid mechanics</topic><topic>Mechanics</topic><topic>Microfluidics</topic><topic>Physics</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Merlo, Adlan</creatorcontrib><creatorcontrib>Losserand, Sylvain</creatorcontrib><creatorcontrib>Yaya, François</creatorcontrib><creatorcontrib>Connes, Philippe</creatorcontrib><creatorcontrib>Faivre, Magalie</creatorcontrib><creatorcontrib>Lorthois, Sylvie</creatorcontrib><creatorcontrib>Minetti, Christophe</creatorcontrib><creatorcontrib>Nader, Elie</creatorcontrib><creatorcontrib>Podgorski, Thomas</creatorcontrib><creatorcontrib>Renoux, Céline</creatorcontrib><creatorcontrib>Coupier, Gwennou</creatorcontrib><creatorcontrib>Franceschini, Emilie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Merlo, Adlan</au><au>Losserand, Sylvain</au><au>Yaya, François</au><au>Connes, Philippe</au><au>Faivre, Magalie</au><au>Lorthois, Sylvie</au><au>Minetti, Christophe</au><au>Nader, Elie</au><au>Podgorski, Thomas</au><au>Renoux, Céline</au><au>Coupier, Gwennou</au><au>Franceschini, Emilie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of storage and buffer composition on the mechanical behavior of flowing red blood cells</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2023-01-17</date><risdate>2023</risdate><volume>122</volume><issue>2</issue><spage>360</spage><epage>373</epage><pages>360-373</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>On-chip study of blood flow has emerged as a powerful tool to assess the contribution of each component of blood to its overall function. Blood has indeed many functions, from gas and nutrient transport to immune response and thermal regulation. Red blood cells play a central role therein, in particular through their specific mechanical properties, which directly influence pressure regulation, oxygen perfusion, or platelet and white cell segregation toward endothelial walls. As the bloom of in-vitro studies has led to the apparition of various storage and sample preparation protocols, we address the question of the robustness of the results involving cell mechanical behavior against this diversity. The effects of three conservation media (EDTA, citrate, and glucose-albumin-sodium-phosphate) and storage time on the red blood cell mechanical behavior are assessed under different flow conditions: cell deformability by ektacytometry, shape recovery of cells flowing out of a microfluidic constriction, and cell-flipping dynamics under shear flow. The impact of buffer solutions (phosphate-buffered saline and density-matched suspension using iodixanol/Optiprep) are also studied by investigating individual cell-flipping dynamics, relative viscosity of cell suspensions, and cell structuration under Poiseuille flow. Our results reveal that storing blood samples up to 7 days after withdrawal and suspending them in adequate density-matched buffer solutions has, in most experiments, a moderate effect on the overall mechanical response, with a possible rapid evolution in the first 3 days after sample collection.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>36476993</pmid><doi>10.1016/j.bpj.2022.12.005</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5010-4148</orcidid><orcidid>https://orcid.org/0000-0002-9232-0268</orcidid><orcidid>https://orcid.org/0000-0002-7067-9747</orcidid><orcidid>https://orcid.org/0000-0002-6054-2456</orcidid><orcidid>https://orcid.org/0000-0001-6469-9170</orcidid><orcidid>https://orcid.org/0000-0002-0711-3695</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2023-01, Vol.122 (2), p.360-373 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9892622 |
source | PubMed Central |
subjects | Biomechanics Blood Viscosity Erythrocyte Deformability - physiology Erythrocytes - physiology Fluid mechanics Mechanics Microfluidics Physics Viscosity |
title | Influence of storage and buffer composition on the mechanical behavior of flowing red blood cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A12%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20storage%20and%20buffer%20composition%20on%20the%20mechanical%20behavior%20of%20flowing%20red%20blood%20cells&rft.jtitle=Biophysical%20journal&rft.au=Merlo,%20Adlan&rft.date=2023-01-17&rft.volume=122&rft.issue=2&rft.spage=360&rft.epage=373&rft.pages=360-373&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2022.12.005&rft_dat=%3Cproquest_pubme%3E2753302482%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c485t-14c065ee265e0f3a639c56f251a528d343f896bc6f1093fc6f18b878ebcaa4853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2753302482&rft_id=info:pmid/36476993&rfr_iscdi=true |