Loading…

New method to identify athletes at high risk of ACL injury using clinic-based measurements and freeware computer analysis

Background High knee abduction moment (KAM) landing mechanics, measured in the biomechanics laboratory, can successfully identify female athletes at increased risk for anterior cruciate ligament (ACL) injury. Methods The authors validated a simpler, clinic-based ACL injury prediction algorithm to id...

Full description

Saved in:
Bibliographic Details
Published in:British journal of sports medicine 2011-04, Vol.45 (4), p.238-244
Main Authors: Myer, Gregory D, Ford, Kevin R, Hewett, Timothy E
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-b590t-10e5610289035f024046926891977a29365bc63d4ef34fafcfaa33cea1911da13
cites cdi_FETCH-LOGICAL-b590t-10e5610289035f024046926891977a29365bc63d4ef34fafcfaa33cea1911da13
container_end_page 244
container_issue 4
container_start_page 238
container_title British journal of sports medicine
container_volume 45
creator Myer, Gregory D
Ford, Kevin R
Hewett, Timothy E
description Background High knee abduction moment (KAM) landing mechanics, measured in the biomechanics laboratory, can successfully identify female athletes at increased risk for anterior cruciate ligament (ACL) injury. Methods The authors validated a simpler, clinic-based ACL injury prediction algorithm to identify female athletes with high KAM measures. The validated ACL injury prediction algorithm employs the clinically obtainable measures of knee valgus motion, knee flexion range of motion, body mass, tibia length and quadriceps-to-hamstrings ratio. It predicts high KAMs in female athletes with high sensitivity (77%) and specificity (71%). Conclusion This report outlines the techniques for this ACL injury prediction algorithm using clinic-based measurements and computer analyses that require only freely available public domain software.
doi_str_mv 10.1136/bjsm.2010.072843
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9892783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4012901261</sourcerecordid><originalsourceid>FETCH-LOGICAL-b590t-10e5610289035f024046926891977a29365bc63d4ef34fafcfaa33cea1911da13</originalsourceid><addsrcrecordid>eNqFkduL1DAUxoso7rj67pMEffBBup5cmjQvwjKoKwzji67gS0jb02lmexmT1rX_vRm6DiqIDyGX8_u-nMOXJE8pXFDK5etiH7oLBvEKiuWC30tWVCiegsjhfrICDjLlUomz5FEIewDKMsgfJmeMQk6lgFUyb_GWdDg2Q0XGgbgK-9HVM7Fj0-KIIR5I43YN8S7ckKEml-sNcf1-8jOZgut3pGxd78q0sAGr6GTD5LGLLlHaV6T2iLfWIymH7jCN6OOrbefgwuPkQW3bgE_u9vPk87u3n9ZX6ebj-w_ry01aZBrGlAJmkgLLNfCsBiZASM1krqlWyjLNZVaUklcCay5qW5e1tZyXaKmmtLKUnydvFt_DVHRYlbE1b1tz8K6zfjaDdebPSu8asxu-G51rpnIeDV7eGfjh24RhNJ0LJbat7XGYgskzzTQVMo_k87_I_TD5OG-EZJbFIJiI0It_QVQpHVcGKlKwUKUfQvBYnxqmYI7Zm2P25pi9WbKPkme_D3oS_Ao7AukCuDDij1Pd-hsjFVeZ2V6vzRcm4evVlpvryL9a-KLb___7nyRVx_A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1779177507</pqid></control><display><type>article</type><title>New method to identify athletes at high risk of ACL injury using clinic-based measurements and freeware computer analysis</title><source>BMJ_英国医学会期刊</source><creator>Myer, Gregory D ; Ford, Kevin R ; Hewett, Timothy E</creator><creatorcontrib>Myer, Gregory D ; Ford, Kevin R ; Hewett, Timothy E</creatorcontrib><description>Background High knee abduction moment (KAM) landing mechanics, measured in the biomechanics laboratory, can successfully identify female athletes at increased risk for anterior cruciate ligament (ACL) injury. Methods The authors validated a simpler, clinic-based ACL injury prediction algorithm to identify female athletes with high KAM measures. The validated ACL injury prediction algorithm employs the clinically obtainable measures of knee valgus motion, knee flexion range of motion, body mass, tibia length and quadriceps-to-hamstrings ratio. It predicts high KAMs in female athletes with high sensitivity (77%) and specificity (71%). Conclusion This report outlines the techniques for this ACL injury prediction algorithm using clinic-based measurements and computer analyses that require only freely available public domain software.</description><identifier>ISSN: 0306-3674</identifier><identifier>ISSN: 1473-0480</identifier><identifier>EISSN: 1473-0480</identifier><identifier>DOI: 10.1136/bjsm.2010.072843</identifier><identifier>PMID: 21081640</identifier><language>eng</language><publisher>England: BMJ Publishing Group Ltd and British Association of Sport and Exercise Medicine</publisher><subject>Algorithms ; Anterior Cruciate Ligament Injuries ; Athletes ; Athletic Injuries - physiopathology ; Athletic Injuries - prevention &amp; control ; Biomechanical Phenomena ; Body Mass Index ; Female ; Females ; Freeware ; Humans ; Image Processing, Computer-Assisted ; Kinematics ; Knee ; Knee Injuries - physiopathology ; Knee Injuries - prevention &amp; control ; Ligaments ; Muscle Strength - physiology ; Photography ; Quadriceps Muscle - physiology ; Range of Motion, Articular ; Risk Factors ; Software ; Sports injuries ; Sports medicine ; Task Performance and Analysis ; Tibia - anatomy &amp; histology</subject><ispartof>British journal of sports medicine, 2011-04, Vol.45 (4), p.238-244</ispartof><rights>Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions</rights><rights>Copyright: 2011 Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions</rights><rights>Copyright BMJ Publishing Group Apr 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b590t-10e5610289035f024046926891977a29365bc63d4ef34fafcfaa33cea1911da13</citedby><cites>FETCH-LOGICAL-b590t-10e5610289035f024046926891977a29365bc63d4ef34fafcfaa33cea1911da13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://bjsm.bmj.com/content/45/4/238.full.pdf$$EPDF$$P50$$Gbmj$$H</linktopdf><linktohtml>$$Uhttp://bjsm.bmj.com/content/45/4/238.full$$EHTML$$P50$$Gbmj$$H</linktohtml><link.rule.ids>112,113,230,314,780,784,885,3194,27924,27925,77594,77595</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21081640$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Myer, Gregory D</creatorcontrib><creatorcontrib>Ford, Kevin R</creatorcontrib><creatorcontrib>Hewett, Timothy E</creatorcontrib><title>New method to identify athletes at high risk of ACL injury using clinic-based measurements and freeware computer analysis</title><title>British journal of sports medicine</title><addtitle>Br J Sports Med</addtitle><description>Background High knee abduction moment (KAM) landing mechanics, measured in the biomechanics laboratory, can successfully identify female athletes at increased risk for anterior cruciate ligament (ACL) injury. Methods The authors validated a simpler, clinic-based ACL injury prediction algorithm to identify female athletes with high KAM measures. The validated ACL injury prediction algorithm employs the clinically obtainable measures of knee valgus motion, knee flexion range of motion, body mass, tibia length and quadriceps-to-hamstrings ratio. It predicts high KAMs in female athletes with high sensitivity (77%) and specificity (71%). Conclusion This report outlines the techniques for this ACL injury prediction algorithm using clinic-based measurements and computer analyses that require only freely available public domain software.</description><subject>Algorithms</subject><subject>Anterior Cruciate Ligament Injuries</subject><subject>Athletes</subject><subject>Athletic Injuries - physiopathology</subject><subject>Athletic Injuries - prevention &amp; control</subject><subject>Biomechanical Phenomena</subject><subject>Body Mass Index</subject><subject>Female</subject><subject>Females</subject><subject>Freeware</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Kinematics</subject><subject>Knee</subject><subject>Knee Injuries - physiopathology</subject><subject>Knee Injuries - prevention &amp; control</subject><subject>Ligaments</subject><subject>Muscle Strength - physiology</subject><subject>Photography</subject><subject>Quadriceps Muscle - physiology</subject><subject>Range of Motion, Articular</subject><subject>Risk Factors</subject><subject>Software</subject><subject>Sports injuries</subject><subject>Sports medicine</subject><subject>Task Performance and Analysis</subject><subject>Tibia - anatomy &amp; histology</subject><issn>0306-3674</issn><issn>1473-0480</issn><issn>1473-0480</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkduL1DAUxoso7rj67pMEffBBup5cmjQvwjKoKwzji67gS0jb02lmexmT1rX_vRm6DiqIDyGX8_u-nMOXJE8pXFDK5etiH7oLBvEKiuWC30tWVCiegsjhfrICDjLlUomz5FEIewDKMsgfJmeMQk6lgFUyb_GWdDg2Q0XGgbgK-9HVM7Fj0-KIIR5I43YN8S7ckKEml-sNcf1-8jOZgut3pGxd78q0sAGr6GTD5LGLLlHaV6T2iLfWIymH7jCN6OOrbefgwuPkQW3bgE_u9vPk87u3n9ZX6ebj-w_ry01aZBrGlAJmkgLLNfCsBiZASM1krqlWyjLNZVaUklcCay5qW5e1tZyXaKmmtLKUnydvFt_DVHRYlbE1b1tz8K6zfjaDdebPSu8asxu-G51rpnIeDV7eGfjh24RhNJ0LJbat7XGYgskzzTQVMo_k87_I_TD5OG-EZJbFIJiI0It_QVQpHVcGKlKwUKUfQvBYnxqmYI7Zm2P25pi9WbKPkme_D3oS_Ao7AukCuDDij1Pd-hsjFVeZ2V6vzRcm4evVlpvryL9a-KLb___7nyRVx_A</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Myer, Gregory D</creator><creator>Ford, Kevin R</creator><creator>Hewett, Timothy E</creator><general>BMJ Publishing Group Ltd and British Association of Sport and Exercise Medicine</general><general>BMJ Publishing Group LTD</general><general>BMJ Publishing Group</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BTHHO</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110401</creationdate><title>New method to identify athletes at high risk of ACL injury using clinic-based measurements and freeware computer analysis</title><author>Myer, Gregory D ; Ford, Kevin R ; Hewett, Timothy E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b590t-10e5610289035f024046926891977a29365bc63d4ef34fafcfaa33cea1911da13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Anterior Cruciate Ligament Injuries</topic><topic>Athletes</topic><topic>Athletic Injuries - physiopathology</topic><topic>Athletic Injuries - prevention &amp; control</topic><topic>Biomechanical Phenomena</topic><topic>Body Mass Index</topic><topic>Female</topic><topic>Females</topic><topic>Freeware</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Kinematics</topic><topic>Knee</topic><topic>Knee Injuries - physiopathology</topic><topic>Knee Injuries - prevention &amp; control</topic><topic>Ligaments</topic><topic>Muscle Strength - physiology</topic><topic>Photography</topic><topic>Quadriceps Muscle - physiology</topic><topic>Range of Motion, Articular</topic><topic>Risk Factors</topic><topic>Software</topic><topic>Sports injuries</topic><topic>Sports medicine</topic><topic>Task Performance and Analysis</topic><topic>Tibia - anatomy &amp; histology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Myer, Gregory D</creatorcontrib><creatorcontrib>Ford, Kevin R</creatorcontrib><creatorcontrib>Hewett, Timothy E</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database (ProQuest)</collection><collection>Physical Education Index</collection><collection>Health &amp; Medical Collection (ProQuest Medical &amp; Health Databases)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>BMJ Journals</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>British journal of sports medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Myer, Gregory D</au><au>Ford, Kevin R</au><au>Hewett, Timothy E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New method to identify athletes at high risk of ACL injury using clinic-based measurements and freeware computer analysis</atitle><jtitle>British journal of sports medicine</jtitle><addtitle>Br J Sports Med</addtitle><date>2011-04-01</date><risdate>2011</risdate><volume>45</volume><issue>4</issue><spage>238</spage><epage>244</epage><pages>238-244</pages><issn>0306-3674</issn><issn>1473-0480</issn><eissn>1473-0480</eissn><abstract>Background High knee abduction moment (KAM) landing mechanics, measured in the biomechanics laboratory, can successfully identify female athletes at increased risk for anterior cruciate ligament (ACL) injury. Methods The authors validated a simpler, clinic-based ACL injury prediction algorithm to identify female athletes with high KAM measures. The validated ACL injury prediction algorithm employs the clinically obtainable measures of knee valgus motion, knee flexion range of motion, body mass, tibia length and quadriceps-to-hamstrings ratio. It predicts high KAMs in female athletes with high sensitivity (77%) and specificity (71%). Conclusion This report outlines the techniques for this ACL injury prediction algorithm using clinic-based measurements and computer analyses that require only freely available public domain software.</abstract><cop>England</cop><pub>BMJ Publishing Group Ltd and British Association of Sport and Exercise Medicine</pub><pmid>21081640</pmid><doi>10.1136/bjsm.2010.072843</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0306-3674
ispartof British journal of sports medicine, 2011-04, Vol.45 (4), p.238-244
issn 0306-3674
1473-0480
1473-0480
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9892783
source BMJ_英国医学会期刊
subjects Algorithms
Anterior Cruciate Ligament Injuries
Athletes
Athletic Injuries - physiopathology
Athletic Injuries - prevention & control
Biomechanical Phenomena
Body Mass Index
Female
Females
Freeware
Humans
Image Processing, Computer-Assisted
Kinematics
Knee
Knee Injuries - physiopathology
Knee Injuries - prevention & control
Ligaments
Muscle Strength - physiology
Photography
Quadriceps Muscle - physiology
Range of Motion, Articular
Risk Factors
Software
Sports injuries
Sports medicine
Task Performance and Analysis
Tibia - anatomy & histology
title New method to identify athletes at high risk of ACL injury using clinic-based measurements and freeware computer analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T09%3A11%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20method%20to%20identify%20athletes%20at%20high%20risk%20of%20ACL%20injury%20using%20clinic-based%20measurements%20and%20freeware%20computer%20analysis&rft.jtitle=British%20journal%20of%20sports%20medicine&rft.au=Myer,%20Gregory%20D&rft.date=2011-04-01&rft.volume=45&rft.issue=4&rft.spage=238&rft.epage=244&rft.pages=238-244&rft.issn=0306-3674&rft.eissn=1473-0480&rft_id=info:doi/10.1136/bjsm.2010.072843&rft_dat=%3Cproquest_pubme%3E4012901261%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-b590t-10e5610289035f024046926891977a29365bc63d4ef34fafcfaa33cea1911da13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1779177507&rft_id=info:pmid/21081640&rfr_iscdi=true