Loading…

Three-dimensional chiral morphodynamics of chemomechanical active shells

Morphogenesis of active shells such as cells is a fundamental chemomechanical process that often exhibits three-dimensional (3D) large deformations and chemical pattern dynamics simultaneously. Here, we establish a chemomechanical active shell theory accounting for mechanical feedback and biochemica...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2022-12, Vol.119 (49), p.e2206159119-e2206159119
Main Authors: Yin, Sifan, Li, Bo, Feng, Xi-Qiao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c421t-18c3e119d59631e0f7508e1685b9d68594503e7b12f28d1c4995539bf651936d3
cites cdi_FETCH-LOGICAL-c421t-18c3e119d59631e0f7508e1685b9d68594503e7b12f28d1c4995539bf651936d3
container_end_page e2206159119
container_issue 49
container_start_page e2206159119
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 119
creator Yin, Sifan
Li, Bo
Feng, Xi-Qiao
description Morphogenesis of active shells such as cells is a fundamental chemomechanical process that often exhibits three-dimensional (3D) large deformations and chemical pattern dynamics simultaneously. Here, we establish a chemomechanical active shell theory accounting for mechanical feedback and biochemical regulation to investigate the symmetry-breaking and 3D chiral morphodynamics emerging in the cell cortex. The active bending and stretching of the elastic shells are regulated by biochemical signals like actomyosin and RhoA, which, in turn, exert mechanical feedback on the biochemical events via deformation-dependent diffusion and inhibition. We show that active deformations can trigger chemomechanical bifurcations, yielding pulse spiral waves and global oscillations, which, with increasing mechanical feedback, give way to traveling or standing waves subsequently. Mechanical feedback is also found to contribute to stabilizing the polarity of emerging patterns, thus ensuring robust morphogenesis. Our results reproduce and unravel the experimentally observed solitary and multiple spiral patterns, which initiate asymmetric cleavage in and starfish embryogenesis. This study underscores the crucial roles of mechanical feedback in cell development and also suggests a chemomechanical framework allowing for 3D large deformation and chemical signaling to explore complex morphogenesis in living shell-like structures.
doi_str_mv 10.1073/pnas.2206159119
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9894169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2755156667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-18c3e119d59631e0f7508e1685b9d68594503e7b12f28d1c4995539bf651936d3</originalsourceid><addsrcrecordid>eNpdkctLAzEQxoMoWh9nb1Lw4mXbTF67uQhSfEHBi55Dmp11I91NTdpC_3tT6vsyc5jffHwzHyHnQEdASz5e9DaNGKMKpAbQe2QAVEOhhKb7ZEApK4tKMHFEjlN6o5RqWdFDcsSVEIzqckAentuIWNS-wz750Nv50LU-5taFuGhDvelt510ahiYPsAsdutb23mXCuqVf4zC1OJ-nU3LQ2HnCs89-Ql7ubp8nD8X06f5xcjMtnGCwLKByHLPTWmrFAWlTSlohqErOdJ2rFpJyLGfAGlbV4ITWUnI9a5QEzVXNT8j1TnexmnVYO-yX2a1ZRN_ZuDHBevN30vvWvIa10ZUWoHQWuPoUiOF9hWlpOp9cPsH2GFbJsFIwtf0my-jlP_QtrGL-0ZaSEqRSqszUeEe5GFKK2HybAWq2KZltSuYnpbxx8fuGb_4rFv4B1s6N4Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2755156667</pqid></control><display><type>article</type><title>Three-dimensional chiral morphodynamics of chemomechanical active shells</title><source>PubMed Central</source><creator>Yin, Sifan ; Li, Bo ; Feng, Xi-Qiao</creator><creatorcontrib>Yin, Sifan ; Li, Bo ; Feng, Xi-Qiao</creatorcontrib><description>Morphogenesis of active shells such as cells is a fundamental chemomechanical process that often exhibits three-dimensional (3D) large deformations and chemical pattern dynamics simultaneously. Here, we establish a chemomechanical active shell theory accounting for mechanical feedback and biochemical regulation to investigate the symmetry-breaking and 3D chiral morphodynamics emerging in the cell cortex. The active bending and stretching of the elastic shells are regulated by biochemical signals like actomyosin and RhoA, which, in turn, exert mechanical feedback on the biochemical events via deformation-dependent diffusion and inhibition. We show that active deformations can trigger chemomechanical bifurcations, yielding pulse spiral waves and global oscillations, which, with increasing mechanical feedback, give way to traveling or standing waves subsequently. Mechanical feedback is also found to contribute to stabilizing the polarity of emerging patterns, thus ensuring robust morphogenesis. Our results reproduce and unravel the experimentally observed solitary and multiple spiral patterns, which initiate asymmetric cleavage in and starfish embryogenesis. This study underscores the crucial roles of mechanical feedback in cell development and also suggests a chemomechanical framework allowing for 3D large deformation and chemical signaling to explore complex morphogenesis in living shell-like structures.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2206159119</identifier><identifier>PMID: 36442097</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Actin Cytoskeleton ; Actomyosin ; Bifurcations ; Biochemistry ; Broken symmetry ; Cell Differentiation ; Chemical Phenomena ; Chemistry, Physical ; Deformation ; Elastic shells ; Embryogenesis ; Embryonic growth stage ; Feedback ; Morphogenesis ; Oscillations ; Physical Sciences ; Polarity ; RhoA protein ; Shell theory ; Shells ; Standing waves</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2022-12, Vol.119 (49), p.e2206159119-e2206159119</ispartof><rights>Copyright National Academy of Sciences Dec 6, 2022</rights><rights>Copyright © 2022 the Author(s). Published by PNAS. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-18c3e119d59631e0f7508e1685b9d68594503e7b12f28d1c4995539bf651936d3</citedby><cites>FETCH-LOGICAL-c421t-18c3e119d59631e0f7508e1685b9d68594503e7b12f28d1c4995539bf651936d3</cites><orcidid>0000-0002-3792-2469 ; 0000-0001-6894-7979</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9894169/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9894169/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36442097$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yin, Sifan</creatorcontrib><creatorcontrib>Li, Bo</creatorcontrib><creatorcontrib>Feng, Xi-Qiao</creatorcontrib><title>Three-dimensional chiral morphodynamics of chemomechanical active shells</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Morphogenesis of active shells such as cells is a fundamental chemomechanical process that often exhibits three-dimensional (3D) large deformations and chemical pattern dynamics simultaneously. Here, we establish a chemomechanical active shell theory accounting for mechanical feedback and biochemical regulation to investigate the symmetry-breaking and 3D chiral morphodynamics emerging in the cell cortex. The active bending and stretching of the elastic shells are regulated by biochemical signals like actomyosin and RhoA, which, in turn, exert mechanical feedback on the biochemical events via deformation-dependent diffusion and inhibition. We show that active deformations can trigger chemomechanical bifurcations, yielding pulse spiral waves and global oscillations, which, with increasing mechanical feedback, give way to traveling or standing waves subsequently. Mechanical feedback is also found to contribute to stabilizing the polarity of emerging patterns, thus ensuring robust morphogenesis. Our results reproduce and unravel the experimentally observed solitary and multiple spiral patterns, which initiate asymmetric cleavage in and starfish embryogenesis. This study underscores the crucial roles of mechanical feedback in cell development and also suggests a chemomechanical framework allowing for 3D large deformation and chemical signaling to explore complex morphogenesis in living shell-like structures.</description><subject>Actin Cytoskeleton</subject><subject>Actomyosin</subject><subject>Bifurcations</subject><subject>Biochemistry</subject><subject>Broken symmetry</subject><subject>Cell Differentiation</subject><subject>Chemical Phenomena</subject><subject>Chemistry, Physical</subject><subject>Deformation</subject><subject>Elastic shells</subject><subject>Embryogenesis</subject><subject>Embryonic growth stage</subject><subject>Feedback</subject><subject>Morphogenesis</subject><subject>Oscillations</subject><subject>Physical Sciences</subject><subject>Polarity</subject><subject>RhoA protein</subject><subject>Shell theory</subject><subject>Shells</subject><subject>Standing waves</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkctLAzEQxoMoWh9nb1Lw4mXbTF67uQhSfEHBi55Dmp11I91NTdpC_3tT6vsyc5jffHwzHyHnQEdASz5e9DaNGKMKpAbQe2QAVEOhhKb7ZEApK4tKMHFEjlN6o5RqWdFDcsSVEIzqckAentuIWNS-wz750Nv50LU-5taFuGhDvelt510ahiYPsAsdutb23mXCuqVf4zC1OJ-nU3LQ2HnCs89-Ql7ubp8nD8X06f5xcjMtnGCwLKByHLPTWmrFAWlTSlohqErOdJ2rFpJyLGfAGlbV4ITWUnI9a5QEzVXNT8j1TnexmnVYO-yX2a1ZRN_ZuDHBevN30vvWvIa10ZUWoHQWuPoUiOF9hWlpOp9cPsH2GFbJsFIwtf0my-jlP_QtrGL-0ZaSEqRSqszUeEe5GFKK2HybAWq2KZltSuYnpbxx8fuGb_4rFv4B1s6N4Q</recordid><startdate>20221206</startdate><enddate>20221206</enddate><creator>Yin, Sifan</creator><creator>Li, Bo</creator><creator>Feng, Xi-Qiao</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3792-2469</orcidid><orcidid>https://orcid.org/0000-0001-6894-7979</orcidid></search><sort><creationdate>20221206</creationdate><title>Three-dimensional chiral morphodynamics of chemomechanical active shells</title><author>Yin, Sifan ; Li, Bo ; Feng, Xi-Qiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-18c3e119d59631e0f7508e1685b9d68594503e7b12f28d1c4995539bf651936d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Actin Cytoskeleton</topic><topic>Actomyosin</topic><topic>Bifurcations</topic><topic>Biochemistry</topic><topic>Broken symmetry</topic><topic>Cell Differentiation</topic><topic>Chemical Phenomena</topic><topic>Chemistry, Physical</topic><topic>Deformation</topic><topic>Elastic shells</topic><topic>Embryogenesis</topic><topic>Embryonic growth stage</topic><topic>Feedback</topic><topic>Morphogenesis</topic><topic>Oscillations</topic><topic>Physical Sciences</topic><topic>Polarity</topic><topic>RhoA protein</topic><topic>Shell theory</topic><topic>Shells</topic><topic>Standing waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Sifan</creatorcontrib><creatorcontrib>Li, Bo</creatorcontrib><creatorcontrib>Feng, Xi-Qiao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Sifan</au><au>Li, Bo</au><au>Feng, Xi-Qiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional chiral morphodynamics of chemomechanical active shells</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2022-12-06</date><risdate>2022</risdate><volume>119</volume><issue>49</issue><spage>e2206159119</spage><epage>e2206159119</epage><pages>e2206159119-e2206159119</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Morphogenesis of active shells such as cells is a fundamental chemomechanical process that often exhibits three-dimensional (3D) large deformations and chemical pattern dynamics simultaneously. Here, we establish a chemomechanical active shell theory accounting for mechanical feedback and biochemical regulation to investigate the symmetry-breaking and 3D chiral morphodynamics emerging in the cell cortex. The active bending and stretching of the elastic shells are regulated by biochemical signals like actomyosin and RhoA, which, in turn, exert mechanical feedback on the biochemical events via deformation-dependent diffusion and inhibition. We show that active deformations can trigger chemomechanical bifurcations, yielding pulse spiral waves and global oscillations, which, with increasing mechanical feedback, give way to traveling or standing waves subsequently. Mechanical feedback is also found to contribute to stabilizing the polarity of emerging patterns, thus ensuring robust morphogenesis. Our results reproduce and unravel the experimentally observed solitary and multiple spiral patterns, which initiate asymmetric cleavage in and starfish embryogenesis. This study underscores the crucial roles of mechanical feedback in cell development and also suggests a chemomechanical framework allowing for 3D large deformation and chemical signaling to explore complex morphogenesis in living shell-like structures.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>36442097</pmid><doi>10.1073/pnas.2206159119</doi><orcidid>https://orcid.org/0000-0002-3792-2469</orcidid><orcidid>https://orcid.org/0000-0001-6894-7979</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2022-12, Vol.119 (49), p.e2206159119-e2206159119
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9894169
source PubMed Central
subjects Actin Cytoskeleton
Actomyosin
Bifurcations
Biochemistry
Broken symmetry
Cell Differentiation
Chemical Phenomena
Chemistry, Physical
Deformation
Elastic shells
Embryogenesis
Embryonic growth stage
Feedback
Morphogenesis
Oscillations
Physical Sciences
Polarity
RhoA protein
Shell theory
Shells
Standing waves
title Three-dimensional chiral morphodynamics of chemomechanical active shells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T16%3A12%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20chiral%20morphodynamics%20of%20chemomechanical%20active%20shells&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Yin,%20Sifan&rft.date=2022-12-06&rft.volume=119&rft.issue=49&rft.spage=e2206159119&rft.epage=e2206159119&rft.pages=e2206159119-e2206159119&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2206159119&rft_dat=%3Cproquest_pubme%3E2755156667%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c421t-18c3e119d59631e0f7508e1685b9d68594503e7b12f28d1c4995539bf651936d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2755156667&rft_id=info:pmid/36442097&rfr_iscdi=true