Loading…
Three-dimensional chiral morphodynamics of chemomechanical active shells
Morphogenesis of active shells such as cells is a fundamental chemomechanical process that often exhibits three-dimensional (3D) large deformations and chemical pattern dynamics simultaneously. Here, we establish a chemomechanical active shell theory accounting for mechanical feedback and biochemica...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2022-12, Vol.119 (49), p.e2206159119-e2206159119 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c421t-18c3e119d59631e0f7508e1685b9d68594503e7b12f28d1c4995539bf651936d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c421t-18c3e119d59631e0f7508e1685b9d68594503e7b12f28d1c4995539bf651936d3 |
container_end_page | e2206159119 |
container_issue | 49 |
container_start_page | e2206159119 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 119 |
creator | Yin, Sifan Li, Bo Feng, Xi-Qiao |
description | Morphogenesis of active shells such as cells is a fundamental chemomechanical process that often exhibits three-dimensional (3D) large deformations and chemical pattern dynamics simultaneously. Here, we establish a chemomechanical active shell theory accounting for mechanical feedback and biochemical regulation to investigate the symmetry-breaking and 3D chiral morphodynamics emerging in the cell cortex. The active bending and stretching of the elastic shells are regulated by biochemical signals like actomyosin and RhoA, which, in turn, exert mechanical feedback on the biochemical events via deformation-dependent diffusion and inhibition. We show that active deformations can trigger chemomechanical bifurcations, yielding pulse spiral waves and global oscillations, which, with increasing mechanical feedback, give way to traveling or standing waves subsequently. Mechanical feedback is also found to contribute to stabilizing the polarity of emerging patterns, thus ensuring robust morphogenesis. Our results reproduce and unravel the experimentally observed solitary and multiple spiral patterns, which initiate asymmetric cleavage in
and starfish embryogenesis. This study underscores the crucial roles of mechanical feedback in cell development and also suggests a chemomechanical framework allowing for 3D large deformation and chemical signaling to explore complex morphogenesis in living shell-like structures. |
doi_str_mv | 10.1073/pnas.2206159119 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9894169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2755156667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-18c3e119d59631e0f7508e1685b9d68594503e7b12f28d1c4995539bf651936d3</originalsourceid><addsrcrecordid>eNpdkctLAzEQxoMoWh9nb1Lw4mXbTF67uQhSfEHBi55Dmp11I91NTdpC_3tT6vsyc5jffHwzHyHnQEdASz5e9DaNGKMKpAbQe2QAVEOhhKb7ZEApK4tKMHFEjlN6o5RqWdFDcsSVEIzqckAentuIWNS-wz750Nv50LU-5taFuGhDvelt510ahiYPsAsdutb23mXCuqVf4zC1OJ-nU3LQ2HnCs89-Ql7ubp8nD8X06f5xcjMtnGCwLKByHLPTWmrFAWlTSlohqErOdJ2rFpJyLGfAGlbV4ITWUnI9a5QEzVXNT8j1TnexmnVYO-yX2a1ZRN_ZuDHBevN30vvWvIa10ZUWoHQWuPoUiOF9hWlpOp9cPsH2GFbJsFIwtf0my-jlP_QtrGL-0ZaSEqRSqszUeEe5GFKK2HybAWq2KZltSuYnpbxx8fuGb_4rFv4B1s6N4Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2755156667</pqid></control><display><type>article</type><title>Three-dimensional chiral morphodynamics of chemomechanical active shells</title><source>PubMed Central</source><creator>Yin, Sifan ; Li, Bo ; Feng, Xi-Qiao</creator><creatorcontrib>Yin, Sifan ; Li, Bo ; Feng, Xi-Qiao</creatorcontrib><description>Morphogenesis of active shells such as cells is a fundamental chemomechanical process that often exhibits three-dimensional (3D) large deformations and chemical pattern dynamics simultaneously. Here, we establish a chemomechanical active shell theory accounting for mechanical feedback and biochemical regulation to investigate the symmetry-breaking and 3D chiral morphodynamics emerging in the cell cortex. The active bending and stretching of the elastic shells are regulated by biochemical signals like actomyosin and RhoA, which, in turn, exert mechanical feedback on the biochemical events via deformation-dependent diffusion and inhibition. We show that active deformations can trigger chemomechanical bifurcations, yielding pulse spiral waves and global oscillations, which, with increasing mechanical feedback, give way to traveling or standing waves subsequently. Mechanical feedback is also found to contribute to stabilizing the polarity of emerging patterns, thus ensuring robust morphogenesis. Our results reproduce and unravel the experimentally observed solitary and multiple spiral patterns, which initiate asymmetric cleavage in
and starfish embryogenesis. This study underscores the crucial roles of mechanical feedback in cell development and also suggests a chemomechanical framework allowing for 3D large deformation and chemical signaling to explore complex morphogenesis in living shell-like structures.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2206159119</identifier><identifier>PMID: 36442097</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Actin Cytoskeleton ; Actomyosin ; Bifurcations ; Biochemistry ; Broken symmetry ; Cell Differentiation ; Chemical Phenomena ; Chemistry, Physical ; Deformation ; Elastic shells ; Embryogenesis ; Embryonic growth stage ; Feedback ; Morphogenesis ; Oscillations ; Physical Sciences ; Polarity ; RhoA protein ; Shell theory ; Shells ; Standing waves</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2022-12, Vol.119 (49), p.e2206159119-e2206159119</ispartof><rights>Copyright National Academy of Sciences Dec 6, 2022</rights><rights>Copyright © 2022 the Author(s). Published by PNAS. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-18c3e119d59631e0f7508e1685b9d68594503e7b12f28d1c4995539bf651936d3</citedby><cites>FETCH-LOGICAL-c421t-18c3e119d59631e0f7508e1685b9d68594503e7b12f28d1c4995539bf651936d3</cites><orcidid>0000-0002-3792-2469 ; 0000-0001-6894-7979</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9894169/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9894169/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36442097$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yin, Sifan</creatorcontrib><creatorcontrib>Li, Bo</creatorcontrib><creatorcontrib>Feng, Xi-Qiao</creatorcontrib><title>Three-dimensional chiral morphodynamics of chemomechanical active shells</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Morphogenesis of active shells such as cells is a fundamental chemomechanical process that often exhibits three-dimensional (3D) large deformations and chemical pattern dynamics simultaneously. Here, we establish a chemomechanical active shell theory accounting for mechanical feedback and biochemical regulation to investigate the symmetry-breaking and 3D chiral morphodynamics emerging in the cell cortex. The active bending and stretching of the elastic shells are regulated by biochemical signals like actomyosin and RhoA, which, in turn, exert mechanical feedback on the biochemical events via deformation-dependent diffusion and inhibition. We show that active deformations can trigger chemomechanical bifurcations, yielding pulse spiral waves and global oscillations, which, with increasing mechanical feedback, give way to traveling or standing waves subsequently. Mechanical feedback is also found to contribute to stabilizing the polarity of emerging patterns, thus ensuring robust morphogenesis. Our results reproduce and unravel the experimentally observed solitary and multiple spiral patterns, which initiate asymmetric cleavage in
and starfish embryogenesis. This study underscores the crucial roles of mechanical feedback in cell development and also suggests a chemomechanical framework allowing for 3D large deformation and chemical signaling to explore complex morphogenesis in living shell-like structures.</description><subject>Actin Cytoskeleton</subject><subject>Actomyosin</subject><subject>Bifurcations</subject><subject>Biochemistry</subject><subject>Broken symmetry</subject><subject>Cell Differentiation</subject><subject>Chemical Phenomena</subject><subject>Chemistry, Physical</subject><subject>Deformation</subject><subject>Elastic shells</subject><subject>Embryogenesis</subject><subject>Embryonic growth stage</subject><subject>Feedback</subject><subject>Morphogenesis</subject><subject>Oscillations</subject><subject>Physical Sciences</subject><subject>Polarity</subject><subject>RhoA protein</subject><subject>Shell theory</subject><subject>Shells</subject><subject>Standing waves</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkctLAzEQxoMoWh9nb1Lw4mXbTF67uQhSfEHBi55Dmp11I91NTdpC_3tT6vsyc5jffHwzHyHnQEdASz5e9DaNGKMKpAbQe2QAVEOhhKb7ZEApK4tKMHFEjlN6o5RqWdFDcsSVEIzqckAentuIWNS-wz750Nv50LU-5taFuGhDvelt510ahiYPsAsdutb23mXCuqVf4zC1OJ-nU3LQ2HnCs89-Ql7ubp8nD8X06f5xcjMtnGCwLKByHLPTWmrFAWlTSlohqErOdJ2rFpJyLGfAGlbV4ITWUnI9a5QEzVXNT8j1TnexmnVYO-yX2a1ZRN_ZuDHBevN30vvWvIa10ZUWoHQWuPoUiOF9hWlpOp9cPsH2GFbJsFIwtf0my-jlP_QtrGL-0ZaSEqRSqszUeEe5GFKK2HybAWq2KZltSuYnpbxx8fuGb_4rFv4B1s6N4Q</recordid><startdate>20221206</startdate><enddate>20221206</enddate><creator>Yin, Sifan</creator><creator>Li, Bo</creator><creator>Feng, Xi-Qiao</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3792-2469</orcidid><orcidid>https://orcid.org/0000-0001-6894-7979</orcidid></search><sort><creationdate>20221206</creationdate><title>Three-dimensional chiral morphodynamics of chemomechanical active shells</title><author>Yin, Sifan ; Li, Bo ; Feng, Xi-Qiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-18c3e119d59631e0f7508e1685b9d68594503e7b12f28d1c4995539bf651936d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Actin Cytoskeleton</topic><topic>Actomyosin</topic><topic>Bifurcations</topic><topic>Biochemistry</topic><topic>Broken symmetry</topic><topic>Cell Differentiation</topic><topic>Chemical Phenomena</topic><topic>Chemistry, Physical</topic><topic>Deformation</topic><topic>Elastic shells</topic><topic>Embryogenesis</topic><topic>Embryonic growth stage</topic><topic>Feedback</topic><topic>Morphogenesis</topic><topic>Oscillations</topic><topic>Physical Sciences</topic><topic>Polarity</topic><topic>RhoA protein</topic><topic>Shell theory</topic><topic>Shells</topic><topic>Standing waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Sifan</creatorcontrib><creatorcontrib>Li, Bo</creatorcontrib><creatorcontrib>Feng, Xi-Qiao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Sifan</au><au>Li, Bo</au><au>Feng, Xi-Qiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional chiral morphodynamics of chemomechanical active shells</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2022-12-06</date><risdate>2022</risdate><volume>119</volume><issue>49</issue><spage>e2206159119</spage><epage>e2206159119</epage><pages>e2206159119-e2206159119</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Morphogenesis of active shells such as cells is a fundamental chemomechanical process that often exhibits three-dimensional (3D) large deformations and chemical pattern dynamics simultaneously. Here, we establish a chemomechanical active shell theory accounting for mechanical feedback and biochemical regulation to investigate the symmetry-breaking and 3D chiral morphodynamics emerging in the cell cortex. The active bending and stretching of the elastic shells are regulated by biochemical signals like actomyosin and RhoA, which, in turn, exert mechanical feedback on the biochemical events via deformation-dependent diffusion and inhibition. We show that active deformations can trigger chemomechanical bifurcations, yielding pulse spiral waves and global oscillations, which, with increasing mechanical feedback, give way to traveling or standing waves subsequently. Mechanical feedback is also found to contribute to stabilizing the polarity of emerging patterns, thus ensuring robust morphogenesis. Our results reproduce and unravel the experimentally observed solitary and multiple spiral patterns, which initiate asymmetric cleavage in
and starfish embryogenesis. This study underscores the crucial roles of mechanical feedback in cell development and also suggests a chemomechanical framework allowing for 3D large deformation and chemical signaling to explore complex morphogenesis in living shell-like structures.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>36442097</pmid><doi>10.1073/pnas.2206159119</doi><orcidid>https://orcid.org/0000-0002-3792-2469</orcidid><orcidid>https://orcid.org/0000-0001-6894-7979</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2022-12, Vol.119 (49), p.e2206159119-e2206159119 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9894169 |
source | PubMed Central |
subjects | Actin Cytoskeleton Actomyosin Bifurcations Biochemistry Broken symmetry Cell Differentiation Chemical Phenomena Chemistry, Physical Deformation Elastic shells Embryogenesis Embryonic growth stage Feedback Morphogenesis Oscillations Physical Sciences Polarity RhoA protein Shell theory Shells Standing waves |
title | Three-dimensional chiral morphodynamics of chemomechanical active shells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T16%3A12%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20chiral%20morphodynamics%20of%20chemomechanical%20active%20shells&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Yin,%20Sifan&rft.date=2022-12-06&rft.volume=119&rft.issue=49&rft.spage=e2206159119&rft.epage=e2206159119&rft.pages=e2206159119-e2206159119&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2206159119&rft_dat=%3Cproquest_pubme%3E2755156667%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c421t-18c3e119d59631e0f7508e1685b9d68594503e7b12f28d1c4995539bf651936d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2755156667&rft_id=info:pmid/36442097&rfr_iscdi=true |