Loading…

Interpretable deep learning for the prognosis of long-term functional outcome post-stroke using acute diffusion weighted imaging

Advances in deep learning can be applied to acute stroke imaging to build powerful and explainable prediction models that could supersede traditionally used biomarkers. We aimed to evaluate the performance and interpretability of a deep learning model based on convolutional neural networks (CNN) in...

Full description

Saved in:
Bibliographic Details
Published in:Journal of cerebral blood flow and metabolism 2023-02, Vol.43 (2), p.198-209
Main Authors: Moulton, Eric, Valabregue, Romain, Piotin, Michel, Marnat, Gaultier, Saleme, Suzana, Lapergue, Bertrand, Lehericy, Stephane, Clarencon, Frederic, Rosso, Charlotte
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c472t-e0cc42bef5566aa258a3105ed6a64683eec9f7520042f06e8b58db8ff7cfacea3
cites cdi_FETCH-LOGICAL-c472t-e0cc42bef5566aa258a3105ed6a64683eec9f7520042f06e8b58db8ff7cfacea3
container_end_page 209
container_issue 2
container_start_page 198
container_title Journal of cerebral blood flow and metabolism
container_volume 43
creator Moulton, Eric
Valabregue, Romain
Piotin, Michel
Marnat, Gaultier
Saleme, Suzana
Lapergue, Bertrand
Lehericy, Stephane
Clarencon, Frederic
Rosso, Charlotte
description Advances in deep learning can be applied to acute stroke imaging to build powerful and explainable prediction models that could supersede traditionally used biomarkers. We aimed to evaluate the performance and interpretability of a deep learning model based on convolutional neural networks (CNN) in predicting long-term functional outcome with diffusion-weighted imaging (DWI) acquired at day 1 post-stroke. Ischemic stroke patients (n = 322) were included from the ASTER and INSULINFARCT trials as well as the Pitié-Salpêtrière registry. We trained a CNN to predict long-term functional outcome assessed at 3 months with the modified Rankin Scale (dichotomized as good [mRS ≤ 2] vs. poor [mRS ≥ 3]) and compared its performance to two logistic regression models using lesion volume and ASPECTS. The CNN contained an attention mechanism, which allowed to visualize the areas of the brain that drove prediction. The deep learning model yielded a significantly higher area under the curve (0.83 95%CI [0.78–0.87]) than lesion volume (0.78 [0.73–0.83]) and ASPECTS (0.77 [0.71–0.83]) (p 
doi_str_mv 10.1177/0271678X221129230
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9903217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0271678X221129230</sage_id><sourcerecordid>2718961909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-e0cc42bef5566aa258a3105ed6a64683eec9f7520042f06e8b58db8ff7cfacea3</originalsourceid><addsrcrecordid>eNp9kctu1DAYRi0EokPhAdggL2GR4ktsJxukqgJaaSQ2ILGzHOd3JiWxg-0Useuj19GUiovEyrJ9vuPLh9BLSs4oVeotYYpK1XxljFLWMk4eoR0Voq0UofIx2m371QacoGcpXRNCGi7EU3TCJZUt4XyHbq98hrhEyKabAPcAC57ARD_6AbsQcT4AXmIYfEhjwsHhKfihKpkZu9XbPAZvJhzWbMNcyJBylXIM3wCvaXMYu-biHZ0r8-DxDxiHQ4Yej7MZCvAcPXFmSvDifjxFXz68_3xxWe0_fby6ON9XtlYsV0CsrVkHTggpjWGiMZwSAb00spYNB7CtU4IRUjNHJDSdaPqucU5ZZywYforeHb3L2s3QW_A5mkkvsdwj_tTBjPrPHT8e9BBudFs-ilFVBG-OgsNfscvzvd7WSE0Z44Lf0MK-vj8shu8rpKznMVmYJuMhrEmXXppW0pa0BaVH1MaQUgT34KZEby3rf1oumVe_v-Uh8avWApwdgWQG0NdhjaWk9B_jHUaXs_g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2718961909</pqid></control><display><type>article</type><title>Interpretable deep learning for the prognosis of long-term functional outcome post-stroke using acute diffusion weighted imaging</title><source>PubMed Central</source><source>SAGE</source><creator>Moulton, Eric ; Valabregue, Romain ; Piotin, Michel ; Marnat, Gaultier ; Saleme, Suzana ; Lapergue, Bertrand ; Lehericy, Stephane ; Clarencon, Frederic ; Rosso, Charlotte</creator><creatorcontrib>Moulton, Eric ; Valabregue, Romain ; Piotin, Michel ; Marnat, Gaultier ; Saleme, Suzana ; Lapergue, Bertrand ; Lehericy, Stephane ; Clarencon, Frederic ; Rosso, Charlotte</creatorcontrib><description>Advances in deep learning can be applied to acute stroke imaging to build powerful and explainable prediction models that could supersede traditionally used biomarkers. We aimed to evaluate the performance and interpretability of a deep learning model based on convolutional neural networks (CNN) in predicting long-term functional outcome with diffusion-weighted imaging (DWI) acquired at day 1 post-stroke. Ischemic stroke patients (n = 322) were included from the ASTER and INSULINFARCT trials as well as the Pitié-Salpêtrière registry. We trained a CNN to predict long-term functional outcome assessed at 3 months with the modified Rankin Scale (dichotomized as good [mRS ≤ 2] vs. poor [mRS ≥ 3]) and compared its performance to two logistic regression models using lesion volume and ASPECTS. The CNN contained an attention mechanism, which allowed to visualize the areas of the brain that drove prediction. The deep learning model yielded a significantly higher area under the curve (0.83 95%CI [0.78–0.87]) than lesion volume (0.78 [0.73–0.83]) and ASPECTS (0.77 [0.71–0.83]) (p &lt; 0.05). Setting all classifiers to the specificity as the deep learning model (i.e., 0.87 [0.82–0.92]), the CNN yielded a significantly higher sensitivity (0.67 [0.59–0.73]) than lesion volume (0.48 [0.40–0.56]) and ASPECTS (0.50 [0.41–0.58]) (p = 0.002). The attention mechanism revealed that the network learned to naturally attend to the lesion to predict outcome.</description><identifier>ISSN: 0271-678X</identifier><identifier>EISSN: 1559-7016</identifier><identifier>DOI: 10.1177/0271678X221129230</identifier><identifier>PMID: 36169033</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Brain Ischemia ; Computer Science ; Deep Learning ; Diffusion Magnetic Resonance Imaging - methods ; Humans ; Life Sciences ; Machine Learning ; Medical Imaging ; Neurons and Cognition ; Original ; Prognosis ; Stroke - diagnostic imaging ; Stroke - pathology</subject><ispartof>Journal of cerebral blood flow and metabolism, 2023-02, Vol.43 (2), p.198-209</ispartof><rights>The Author(s) 2022</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>The Author(s) 2022 2022 International Society for Cerebral Blood Flow and Metabolism</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-e0cc42bef5566aa258a3105ed6a64683eec9f7520042f06e8b58db8ff7cfacea3</citedby><cites>FETCH-LOGICAL-c472t-e0cc42bef5566aa258a3105ed6a64683eec9f7520042f06e8b58db8ff7cfacea3</cites><orcidid>0000-0003-0978-5249 ; 0000-0001-7236-1508 ; 0000-0002-1354-4328 ; 0000-0002-5802-3518 ; 0000-0002-7611-7753</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9903217/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9903217/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792,79135</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36169033$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04122353$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Moulton, Eric</creatorcontrib><creatorcontrib>Valabregue, Romain</creatorcontrib><creatorcontrib>Piotin, Michel</creatorcontrib><creatorcontrib>Marnat, Gaultier</creatorcontrib><creatorcontrib>Saleme, Suzana</creatorcontrib><creatorcontrib>Lapergue, Bertrand</creatorcontrib><creatorcontrib>Lehericy, Stephane</creatorcontrib><creatorcontrib>Clarencon, Frederic</creatorcontrib><creatorcontrib>Rosso, Charlotte</creatorcontrib><title>Interpretable deep learning for the prognosis of long-term functional outcome post-stroke using acute diffusion weighted imaging</title><title>Journal of cerebral blood flow and metabolism</title><addtitle>J Cereb Blood Flow Metab</addtitle><description>Advances in deep learning can be applied to acute stroke imaging to build powerful and explainable prediction models that could supersede traditionally used biomarkers. We aimed to evaluate the performance and interpretability of a deep learning model based on convolutional neural networks (CNN) in predicting long-term functional outcome with diffusion-weighted imaging (DWI) acquired at day 1 post-stroke. Ischemic stroke patients (n = 322) were included from the ASTER and INSULINFARCT trials as well as the Pitié-Salpêtrière registry. We trained a CNN to predict long-term functional outcome assessed at 3 months with the modified Rankin Scale (dichotomized as good [mRS ≤ 2] vs. poor [mRS ≥ 3]) and compared its performance to two logistic regression models using lesion volume and ASPECTS. The CNN contained an attention mechanism, which allowed to visualize the areas of the brain that drove prediction. The deep learning model yielded a significantly higher area under the curve (0.83 95%CI [0.78–0.87]) than lesion volume (0.78 [0.73–0.83]) and ASPECTS (0.77 [0.71–0.83]) (p &lt; 0.05). Setting all classifiers to the specificity as the deep learning model (i.e., 0.87 [0.82–0.92]), the CNN yielded a significantly higher sensitivity (0.67 [0.59–0.73]) than lesion volume (0.48 [0.40–0.56]) and ASPECTS (0.50 [0.41–0.58]) (p = 0.002). The attention mechanism revealed that the network learned to naturally attend to the lesion to predict outcome.</description><subject>Brain Ischemia</subject><subject>Computer Science</subject><subject>Deep Learning</subject><subject>Diffusion Magnetic Resonance Imaging - methods</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Machine Learning</subject><subject>Medical Imaging</subject><subject>Neurons and Cognition</subject><subject>Original</subject><subject>Prognosis</subject><subject>Stroke - diagnostic imaging</subject><subject>Stroke - pathology</subject><issn>0271-678X</issn><issn>1559-7016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kctu1DAYRi0EokPhAdggL2GR4ktsJxukqgJaaSQ2ILGzHOd3JiWxg-0Useuj19GUiovEyrJ9vuPLh9BLSs4oVeotYYpK1XxljFLWMk4eoR0Voq0UofIx2m371QacoGcpXRNCGi7EU3TCJZUt4XyHbq98hrhEyKabAPcAC57ARD_6AbsQcT4AXmIYfEhjwsHhKfihKpkZu9XbPAZvJhzWbMNcyJBylXIM3wCvaXMYu-biHZ0r8-DxDxiHQ4Yej7MZCvAcPXFmSvDifjxFXz68_3xxWe0_fby6ON9XtlYsV0CsrVkHTggpjWGiMZwSAb00spYNB7CtU4IRUjNHJDSdaPqucU5ZZywYforeHb3L2s3QW_A5mkkvsdwj_tTBjPrPHT8e9BBudFs-ilFVBG-OgsNfscvzvd7WSE0Z44Lf0MK-vj8shu8rpKznMVmYJuMhrEmXXppW0pa0BaVH1MaQUgT34KZEby3rf1oumVe_v-Uh8avWApwdgWQG0NdhjaWk9B_jHUaXs_g</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Moulton, Eric</creator><creator>Valabregue, Romain</creator><creator>Piotin, Michel</creator><creator>Marnat, Gaultier</creator><creator>Saleme, Suzana</creator><creator>Lapergue, Bertrand</creator><creator>Lehericy, Stephane</creator><creator>Clarencon, Frederic</creator><creator>Rosso, Charlotte</creator><general>SAGE Publications</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0978-5249</orcidid><orcidid>https://orcid.org/0000-0001-7236-1508</orcidid><orcidid>https://orcid.org/0000-0002-1354-4328</orcidid><orcidid>https://orcid.org/0000-0002-5802-3518</orcidid><orcidid>https://orcid.org/0000-0002-7611-7753</orcidid></search><sort><creationdate>20230201</creationdate><title>Interpretable deep learning for the prognosis of long-term functional outcome post-stroke using acute diffusion weighted imaging</title><author>Moulton, Eric ; Valabregue, Romain ; Piotin, Michel ; Marnat, Gaultier ; Saleme, Suzana ; Lapergue, Bertrand ; Lehericy, Stephane ; Clarencon, Frederic ; Rosso, Charlotte</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-e0cc42bef5566aa258a3105ed6a64683eec9f7520042f06e8b58db8ff7cfacea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Brain Ischemia</topic><topic>Computer Science</topic><topic>Deep Learning</topic><topic>Diffusion Magnetic Resonance Imaging - methods</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Machine Learning</topic><topic>Medical Imaging</topic><topic>Neurons and Cognition</topic><topic>Original</topic><topic>Prognosis</topic><topic>Stroke - diagnostic imaging</topic><topic>Stroke - pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moulton, Eric</creatorcontrib><creatorcontrib>Valabregue, Romain</creatorcontrib><creatorcontrib>Piotin, Michel</creatorcontrib><creatorcontrib>Marnat, Gaultier</creatorcontrib><creatorcontrib>Saleme, Suzana</creatorcontrib><creatorcontrib>Lapergue, Bertrand</creatorcontrib><creatorcontrib>Lehericy, Stephane</creatorcontrib><creatorcontrib>Clarencon, Frederic</creatorcontrib><creatorcontrib>Rosso, Charlotte</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cerebral blood flow and metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moulton, Eric</au><au>Valabregue, Romain</au><au>Piotin, Michel</au><au>Marnat, Gaultier</au><au>Saleme, Suzana</au><au>Lapergue, Bertrand</au><au>Lehericy, Stephane</au><au>Clarencon, Frederic</au><au>Rosso, Charlotte</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interpretable deep learning for the prognosis of long-term functional outcome post-stroke using acute diffusion weighted imaging</atitle><jtitle>Journal of cerebral blood flow and metabolism</jtitle><addtitle>J Cereb Blood Flow Metab</addtitle><date>2023-02-01</date><risdate>2023</risdate><volume>43</volume><issue>2</issue><spage>198</spage><epage>209</epage><pages>198-209</pages><issn>0271-678X</issn><eissn>1559-7016</eissn><abstract>Advances in deep learning can be applied to acute stroke imaging to build powerful and explainable prediction models that could supersede traditionally used biomarkers. We aimed to evaluate the performance and interpretability of a deep learning model based on convolutional neural networks (CNN) in predicting long-term functional outcome with diffusion-weighted imaging (DWI) acquired at day 1 post-stroke. Ischemic stroke patients (n = 322) were included from the ASTER and INSULINFARCT trials as well as the Pitié-Salpêtrière registry. We trained a CNN to predict long-term functional outcome assessed at 3 months with the modified Rankin Scale (dichotomized as good [mRS ≤ 2] vs. poor [mRS ≥ 3]) and compared its performance to two logistic regression models using lesion volume and ASPECTS. The CNN contained an attention mechanism, which allowed to visualize the areas of the brain that drove prediction. The deep learning model yielded a significantly higher area under the curve (0.83 95%CI [0.78–0.87]) than lesion volume (0.78 [0.73–0.83]) and ASPECTS (0.77 [0.71–0.83]) (p &lt; 0.05). Setting all classifiers to the specificity as the deep learning model (i.e., 0.87 [0.82–0.92]), the CNN yielded a significantly higher sensitivity (0.67 [0.59–0.73]) than lesion volume (0.48 [0.40–0.56]) and ASPECTS (0.50 [0.41–0.58]) (p = 0.002). The attention mechanism revealed that the network learned to naturally attend to the lesion to predict outcome.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>36169033</pmid><doi>10.1177/0271678X221129230</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0978-5249</orcidid><orcidid>https://orcid.org/0000-0001-7236-1508</orcidid><orcidid>https://orcid.org/0000-0002-1354-4328</orcidid><orcidid>https://orcid.org/0000-0002-5802-3518</orcidid><orcidid>https://orcid.org/0000-0002-7611-7753</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0271-678X
ispartof Journal of cerebral blood flow and metabolism, 2023-02, Vol.43 (2), p.198-209
issn 0271-678X
1559-7016
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9903217
source PubMed Central; SAGE
subjects Brain Ischemia
Computer Science
Deep Learning
Diffusion Magnetic Resonance Imaging - methods
Humans
Life Sciences
Machine Learning
Medical Imaging
Neurons and Cognition
Original
Prognosis
Stroke - diagnostic imaging
Stroke - pathology
title Interpretable deep learning for the prognosis of long-term functional outcome post-stroke using acute diffusion weighted imaging
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T05%3A32%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interpretable%20deep%20learning%20for%20the%20prognosis%20of%20long-term%20functional%20outcome%20post-stroke%20using%20acute%20diffusion%20weighted%20imaging&rft.jtitle=Journal%20of%20cerebral%20blood%20flow%20and%20metabolism&rft.au=Moulton,%20Eric&rft.date=2023-02-01&rft.volume=43&rft.issue=2&rft.spage=198&rft.epage=209&rft.pages=198-209&rft.issn=0271-678X&rft.eissn=1559-7016&rft_id=info:doi/10.1177/0271678X221129230&rft_dat=%3Cproquest_pubme%3E2718961909%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c472t-e0cc42bef5566aa258a3105ed6a64683eec9f7520042f06e8b58db8ff7cfacea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2718961909&rft_id=info:pmid/36169033&rft_sage_id=10.1177_0271678X221129230&rfr_iscdi=true