Loading…
Interpretable deep learning for the prognosis of long-term functional outcome post-stroke using acute diffusion weighted imaging
Advances in deep learning can be applied to acute stroke imaging to build powerful and explainable prediction models that could supersede traditionally used biomarkers. We aimed to evaluate the performance and interpretability of a deep learning model based on convolutional neural networks (CNN) in...
Saved in:
Published in: | Journal of cerebral blood flow and metabolism 2023-02, Vol.43 (2), p.198-209 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c472t-e0cc42bef5566aa258a3105ed6a64683eec9f7520042f06e8b58db8ff7cfacea3 |
---|---|
cites | cdi_FETCH-LOGICAL-c472t-e0cc42bef5566aa258a3105ed6a64683eec9f7520042f06e8b58db8ff7cfacea3 |
container_end_page | 209 |
container_issue | 2 |
container_start_page | 198 |
container_title | Journal of cerebral blood flow and metabolism |
container_volume | 43 |
creator | Moulton, Eric Valabregue, Romain Piotin, Michel Marnat, Gaultier Saleme, Suzana Lapergue, Bertrand Lehericy, Stephane Clarencon, Frederic Rosso, Charlotte |
description | Advances in deep learning can be applied to acute stroke imaging to build powerful and explainable prediction models that could supersede traditionally used biomarkers. We aimed to evaluate the performance and interpretability of a deep learning model based on convolutional neural networks (CNN) in predicting long-term functional outcome with diffusion-weighted imaging (DWI) acquired at day 1 post-stroke. Ischemic stroke patients (n = 322) were included from the ASTER and INSULINFARCT trials as well as the Pitié-Salpêtrière registry. We trained a CNN to predict long-term functional outcome assessed at 3 months with the modified Rankin Scale (dichotomized as good [mRS ≤ 2] vs. poor [mRS ≥ 3]) and compared its performance to two logistic regression models using lesion volume and ASPECTS. The CNN contained an attention mechanism, which allowed to visualize the areas of the brain that drove prediction. The deep learning model yielded a significantly higher area under the curve (0.83 95%CI [0.78–0.87]) than lesion volume (0.78 [0.73–0.83]) and ASPECTS (0.77 [0.71–0.83]) (p |
doi_str_mv | 10.1177/0271678X221129230 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9903217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0271678X221129230</sage_id><sourcerecordid>2718961909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-e0cc42bef5566aa258a3105ed6a64683eec9f7520042f06e8b58db8ff7cfacea3</originalsourceid><addsrcrecordid>eNp9kctu1DAYRi0EokPhAdggL2GR4ktsJxukqgJaaSQ2ILGzHOd3JiWxg-0Useuj19GUiovEyrJ9vuPLh9BLSs4oVeotYYpK1XxljFLWMk4eoR0Voq0UofIx2m371QacoGcpXRNCGi7EU3TCJZUt4XyHbq98hrhEyKabAPcAC57ARD_6AbsQcT4AXmIYfEhjwsHhKfihKpkZu9XbPAZvJhzWbMNcyJBylXIM3wCvaXMYu-biHZ0r8-DxDxiHQ4Yej7MZCvAcPXFmSvDifjxFXz68_3xxWe0_fby6ON9XtlYsV0CsrVkHTggpjWGiMZwSAb00spYNB7CtU4IRUjNHJDSdaPqucU5ZZywYforeHb3L2s3QW_A5mkkvsdwj_tTBjPrPHT8e9BBudFs-ilFVBG-OgsNfscvzvd7WSE0Z44Lf0MK-vj8shu8rpKznMVmYJuMhrEmXXppW0pa0BaVH1MaQUgT34KZEby3rf1oumVe_v-Uh8avWApwdgWQG0NdhjaWk9B_jHUaXs_g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2718961909</pqid></control><display><type>article</type><title>Interpretable deep learning for the prognosis of long-term functional outcome post-stroke using acute diffusion weighted imaging</title><source>PubMed Central</source><source>SAGE</source><creator>Moulton, Eric ; Valabregue, Romain ; Piotin, Michel ; Marnat, Gaultier ; Saleme, Suzana ; Lapergue, Bertrand ; Lehericy, Stephane ; Clarencon, Frederic ; Rosso, Charlotte</creator><creatorcontrib>Moulton, Eric ; Valabregue, Romain ; Piotin, Michel ; Marnat, Gaultier ; Saleme, Suzana ; Lapergue, Bertrand ; Lehericy, Stephane ; Clarencon, Frederic ; Rosso, Charlotte</creatorcontrib><description>Advances in deep learning can be applied to acute stroke imaging to build powerful and explainable prediction models that could supersede traditionally used biomarkers. We aimed to evaluate the performance and interpretability of a deep learning model based on convolutional neural networks (CNN) in predicting long-term functional outcome with diffusion-weighted imaging (DWI) acquired at day 1 post-stroke. Ischemic stroke patients (n = 322) were included from the ASTER and INSULINFARCT trials as well as the Pitié-Salpêtrière registry. We trained a CNN to predict long-term functional outcome assessed at 3 months with the modified Rankin Scale (dichotomized as good [mRS ≤ 2] vs. poor [mRS ≥ 3]) and compared its performance to two logistic regression models using lesion volume and ASPECTS. The CNN contained an attention mechanism, which allowed to visualize the areas of the brain that drove prediction. The deep learning model yielded a significantly higher area under the curve (0.83 95%CI [0.78–0.87]) than lesion volume (0.78 [0.73–0.83]) and ASPECTS (0.77 [0.71–0.83]) (p < 0.05). Setting all classifiers to the specificity as the deep learning model (i.e., 0.87 [0.82–0.92]), the CNN yielded a significantly higher sensitivity (0.67 [0.59–0.73]) than lesion volume (0.48 [0.40–0.56]) and ASPECTS (0.50 [0.41–0.58]) (p = 0.002). The attention mechanism revealed that the network learned to naturally attend to the lesion to predict outcome.</description><identifier>ISSN: 0271-678X</identifier><identifier>EISSN: 1559-7016</identifier><identifier>DOI: 10.1177/0271678X221129230</identifier><identifier>PMID: 36169033</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Brain Ischemia ; Computer Science ; Deep Learning ; Diffusion Magnetic Resonance Imaging - methods ; Humans ; Life Sciences ; Machine Learning ; Medical Imaging ; Neurons and Cognition ; Original ; Prognosis ; Stroke - diagnostic imaging ; Stroke - pathology</subject><ispartof>Journal of cerebral blood flow and metabolism, 2023-02, Vol.43 (2), p.198-209</ispartof><rights>The Author(s) 2022</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>The Author(s) 2022 2022 International Society for Cerebral Blood Flow and Metabolism</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-e0cc42bef5566aa258a3105ed6a64683eec9f7520042f06e8b58db8ff7cfacea3</citedby><cites>FETCH-LOGICAL-c472t-e0cc42bef5566aa258a3105ed6a64683eec9f7520042f06e8b58db8ff7cfacea3</cites><orcidid>0000-0003-0978-5249 ; 0000-0001-7236-1508 ; 0000-0002-1354-4328 ; 0000-0002-5802-3518 ; 0000-0002-7611-7753</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9903217/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9903217/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792,79135</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36169033$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04122353$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Moulton, Eric</creatorcontrib><creatorcontrib>Valabregue, Romain</creatorcontrib><creatorcontrib>Piotin, Michel</creatorcontrib><creatorcontrib>Marnat, Gaultier</creatorcontrib><creatorcontrib>Saleme, Suzana</creatorcontrib><creatorcontrib>Lapergue, Bertrand</creatorcontrib><creatorcontrib>Lehericy, Stephane</creatorcontrib><creatorcontrib>Clarencon, Frederic</creatorcontrib><creatorcontrib>Rosso, Charlotte</creatorcontrib><title>Interpretable deep learning for the prognosis of long-term functional outcome post-stroke using acute diffusion weighted imaging</title><title>Journal of cerebral blood flow and metabolism</title><addtitle>J Cereb Blood Flow Metab</addtitle><description>Advances in deep learning can be applied to acute stroke imaging to build powerful and explainable prediction models that could supersede traditionally used biomarkers. We aimed to evaluate the performance and interpretability of a deep learning model based on convolutional neural networks (CNN) in predicting long-term functional outcome with diffusion-weighted imaging (DWI) acquired at day 1 post-stroke. Ischemic stroke patients (n = 322) were included from the ASTER and INSULINFARCT trials as well as the Pitié-Salpêtrière registry. We trained a CNN to predict long-term functional outcome assessed at 3 months with the modified Rankin Scale (dichotomized as good [mRS ≤ 2] vs. poor [mRS ≥ 3]) and compared its performance to two logistic regression models using lesion volume and ASPECTS. The CNN contained an attention mechanism, which allowed to visualize the areas of the brain that drove prediction. The deep learning model yielded a significantly higher area under the curve (0.83 95%CI [0.78–0.87]) than lesion volume (0.78 [0.73–0.83]) and ASPECTS (0.77 [0.71–0.83]) (p < 0.05). Setting all classifiers to the specificity as the deep learning model (i.e., 0.87 [0.82–0.92]), the CNN yielded a significantly higher sensitivity (0.67 [0.59–0.73]) than lesion volume (0.48 [0.40–0.56]) and ASPECTS (0.50 [0.41–0.58]) (p = 0.002). The attention mechanism revealed that the network learned to naturally attend to the lesion to predict outcome.</description><subject>Brain Ischemia</subject><subject>Computer Science</subject><subject>Deep Learning</subject><subject>Diffusion Magnetic Resonance Imaging - methods</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Machine Learning</subject><subject>Medical Imaging</subject><subject>Neurons and Cognition</subject><subject>Original</subject><subject>Prognosis</subject><subject>Stroke - diagnostic imaging</subject><subject>Stroke - pathology</subject><issn>0271-678X</issn><issn>1559-7016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kctu1DAYRi0EokPhAdggL2GR4ktsJxukqgJaaSQ2ILGzHOd3JiWxg-0Useuj19GUiovEyrJ9vuPLh9BLSs4oVeotYYpK1XxljFLWMk4eoR0Voq0UofIx2m371QacoGcpXRNCGi7EU3TCJZUt4XyHbq98hrhEyKabAPcAC57ARD_6AbsQcT4AXmIYfEhjwsHhKfihKpkZu9XbPAZvJhzWbMNcyJBylXIM3wCvaXMYu-biHZ0r8-DxDxiHQ4Yej7MZCvAcPXFmSvDifjxFXz68_3xxWe0_fby6ON9XtlYsV0CsrVkHTggpjWGiMZwSAb00spYNB7CtU4IRUjNHJDSdaPqucU5ZZywYforeHb3L2s3QW_A5mkkvsdwj_tTBjPrPHT8e9BBudFs-ilFVBG-OgsNfscvzvd7WSE0Z44Lf0MK-vj8shu8rpKznMVmYJuMhrEmXXppW0pa0BaVH1MaQUgT34KZEby3rf1oumVe_v-Uh8avWApwdgWQG0NdhjaWk9B_jHUaXs_g</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Moulton, Eric</creator><creator>Valabregue, Romain</creator><creator>Piotin, Michel</creator><creator>Marnat, Gaultier</creator><creator>Saleme, Suzana</creator><creator>Lapergue, Bertrand</creator><creator>Lehericy, Stephane</creator><creator>Clarencon, Frederic</creator><creator>Rosso, Charlotte</creator><general>SAGE Publications</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0978-5249</orcidid><orcidid>https://orcid.org/0000-0001-7236-1508</orcidid><orcidid>https://orcid.org/0000-0002-1354-4328</orcidid><orcidid>https://orcid.org/0000-0002-5802-3518</orcidid><orcidid>https://orcid.org/0000-0002-7611-7753</orcidid></search><sort><creationdate>20230201</creationdate><title>Interpretable deep learning for the prognosis of long-term functional outcome post-stroke using acute diffusion weighted imaging</title><author>Moulton, Eric ; Valabregue, Romain ; Piotin, Michel ; Marnat, Gaultier ; Saleme, Suzana ; Lapergue, Bertrand ; Lehericy, Stephane ; Clarencon, Frederic ; Rosso, Charlotte</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-e0cc42bef5566aa258a3105ed6a64683eec9f7520042f06e8b58db8ff7cfacea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Brain Ischemia</topic><topic>Computer Science</topic><topic>Deep Learning</topic><topic>Diffusion Magnetic Resonance Imaging - methods</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Machine Learning</topic><topic>Medical Imaging</topic><topic>Neurons and Cognition</topic><topic>Original</topic><topic>Prognosis</topic><topic>Stroke - diagnostic imaging</topic><topic>Stroke - pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moulton, Eric</creatorcontrib><creatorcontrib>Valabregue, Romain</creatorcontrib><creatorcontrib>Piotin, Michel</creatorcontrib><creatorcontrib>Marnat, Gaultier</creatorcontrib><creatorcontrib>Saleme, Suzana</creatorcontrib><creatorcontrib>Lapergue, Bertrand</creatorcontrib><creatorcontrib>Lehericy, Stephane</creatorcontrib><creatorcontrib>Clarencon, Frederic</creatorcontrib><creatorcontrib>Rosso, Charlotte</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cerebral blood flow and metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moulton, Eric</au><au>Valabregue, Romain</au><au>Piotin, Michel</au><au>Marnat, Gaultier</au><au>Saleme, Suzana</au><au>Lapergue, Bertrand</au><au>Lehericy, Stephane</au><au>Clarencon, Frederic</au><au>Rosso, Charlotte</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interpretable deep learning for the prognosis of long-term functional outcome post-stroke using acute diffusion weighted imaging</atitle><jtitle>Journal of cerebral blood flow and metabolism</jtitle><addtitle>J Cereb Blood Flow Metab</addtitle><date>2023-02-01</date><risdate>2023</risdate><volume>43</volume><issue>2</issue><spage>198</spage><epage>209</epage><pages>198-209</pages><issn>0271-678X</issn><eissn>1559-7016</eissn><abstract>Advances in deep learning can be applied to acute stroke imaging to build powerful and explainable prediction models that could supersede traditionally used biomarkers. We aimed to evaluate the performance and interpretability of a deep learning model based on convolutional neural networks (CNN) in predicting long-term functional outcome with diffusion-weighted imaging (DWI) acquired at day 1 post-stroke. Ischemic stroke patients (n = 322) were included from the ASTER and INSULINFARCT trials as well as the Pitié-Salpêtrière registry. We trained a CNN to predict long-term functional outcome assessed at 3 months with the modified Rankin Scale (dichotomized as good [mRS ≤ 2] vs. poor [mRS ≥ 3]) and compared its performance to two logistic regression models using lesion volume and ASPECTS. The CNN contained an attention mechanism, which allowed to visualize the areas of the brain that drove prediction. The deep learning model yielded a significantly higher area under the curve (0.83 95%CI [0.78–0.87]) than lesion volume (0.78 [0.73–0.83]) and ASPECTS (0.77 [0.71–0.83]) (p < 0.05). Setting all classifiers to the specificity as the deep learning model (i.e., 0.87 [0.82–0.92]), the CNN yielded a significantly higher sensitivity (0.67 [0.59–0.73]) than lesion volume (0.48 [0.40–0.56]) and ASPECTS (0.50 [0.41–0.58]) (p = 0.002). The attention mechanism revealed that the network learned to naturally attend to the lesion to predict outcome.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>36169033</pmid><doi>10.1177/0271678X221129230</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0978-5249</orcidid><orcidid>https://orcid.org/0000-0001-7236-1508</orcidid><orcidid>https://orcid.org/0000-0002-1354-4328</orcidid><orcidid>https://orcid.org/0000-0002-5802-3518</orcidid><orcidid>https://orcid.org/0000-0002-7611-7753</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0271-678X |
ispartof | Journal of cerebral blood flow and metabolism, 2023-02, Vol.43 (2), p.198-209 |
issn | 0271-678X 1559-7016 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9903217 |
source | PubMed Central; SAGE |
subjects | Brain Ischemia Computer Science Deep Learning Diffusion Magnetic Resonance Imaging - methods Humans Life Sciences Machine Learning Medical Imaging Neurons and Cognition Original Prognosis Stroke - diagnostic imaging Stroke - pathology |
title | Interpretable deep learning for the prognosis of long-term functional outcome post-stroke using acute diffusion weighted imaging |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T05%3A32%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interpretable%20deep%20learning%20for%20the%20prognosis%20of%20long-term%20functional%20outcome%20post-stroke%20using%20acute%20diffusion%20weighted%20imaging&rft.jtitle=Journal%20of%20cerebral%20blood%20flow%20and%20metabolism&rft.au=Moulton,%20Eric&rft.date=2023-02-01&rft.volume=43&rft.issue=2&rft.spage=198&rft.epage=209&rft.pages=198-209&rft.issn=0271-678X&rft.eissn=1559-7016&rft_id=info:doi/10.1177/0271678X221129230&rft_dat=%3Cproquest_pubme%3E2718961909%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c472t-e0cc42bef5566aa258a3105ed6a64683eec9f7520042f06e8b58db8ff7cfacea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2718961909&rft_id=info:pmid/36169033&rft_sage_id=10.1177_0271678X221129230&rfr_iscdi=true |