Loading…
Tumor Growth Rate Informs Treatment Efficacy in Metastatic Pancreatic Adenocarcinoma: Application of a Growth and Regression Model to Pivotal Trial and Real-World Data
Methods for screening agents earlier in development and strategies for conducting smaller randomized controlled trials (RCTs) are needed. We retrospectively applied a tumor growth model to estimate the rates of growth of pancreatic cancer using radiographic tumor measurements or serum CA 19-9 values...
Saved in:
Published in: | The oncologist (Dayton, Ohio) Ohio), 2023-02, Vol.28 (2), p.139-148 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c457t-5524518815e545b4c18a9bc69171795655f04ff9c65b480ab872559886157bf73 |
---|---|
cites | cdi_FETCH-LOGICAL-c457t-5524518815e545b4c18a9bc69171795655f04ff9c65b480ab872559886157bf73 |
container_end_page | 148 |
container_issue | 2 |
container_start_page | 139 |
container_title | The oncologist (Dayton, Ohio) |
container_volume | 28 |
creator | Yeh, Celine Zhou, Mengxi Sigel, Keith Jameson, Gayle White, Ruth Safyan, Rachael Saenger, Yvonne Hecht, Elizabeth Chabot, John Schreibman, Stephen Juzyna, Béata Ychou, Marc Conroy, Thierry Fojo, Tito Manji, Gulam A Von Hoff, Daniel Bates, Susan E |
description | Methods for screening agents earlier in development and strategies for conducting smaller randomized controlled trials (RCTs) are needed.
We retrospectively applied a tumor growth model to estimate the rates of growth of pancreatic cancer using radiographic tumor measurements or serum CA 19-9 values from 3033 patients with stages III-IV PDAC who were enrolled in 8 clinical trials or were included in 2 large real-world data sets.
g correlated inversely with OS and was consistently lower in the experimental arms than in the control arms of RCTs. At the individual patient level, g was significantly faster for lesions metastatic to the liver relative to those localized to the pancreas. Regardless of regimen, g increased toward the end of therapy, often by over 3-fold.
Growth rates of PDAC can be determined using radiographic tumor measurement and CA 19-9 values. g is inversely associated with OS and can differentiate therapies within the same trial and across trials. g can also be used to characterize changes in the behavior of an individual's PDAC, such as differences in the growth rate of lesions based on metastatic site, and the emergence of chemoresistance. We provide examples of how g can be used to benchmark phase II and III clinical data to a virtual reference arm to inform go/no go decisions and consider novel trial designs to optimize and accelerate drug development. |
doi_str_mv | 10.1093/oncolo/oyac217 |
format | article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9907043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A779838447</galeid><sourcerecordid>A779838447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-5524518815e545b4c18a9bc69171795655f04ff9c65b480ab872559886157bf73</originalsourceid><addsrcrecordid>eNptklFrFDEQxxdRbK2--igBX3zZNtlsNhsfhKPWWmixlBN9C7PZ5BrJJtckV7lP5Nc0y12LQgkkQ-Y3_5mEf1W9JfiYYEFPglfBhZOwBdUQ_qw6JKwVdSvwz-clxj2tOWHioHqV0i-MS0ibl9UB7WjHKeeH1Z_lZgoRncfwO9-iG8gaXXgT4pTQMmrIk_YZnRljFagtsh5d6QwpQ7YKXYNXM1PCxah9UBCV9WGCj2ixXrtSkm3wKBgEDw3Aj-hGr6JOaU5dhVE7lAO6tvchgys9bdl3FLj6R4huRJ8hw-vqhQGX9Jv9eVR9_3K2PP1aX347vzhdXNaqZTzXjDUtI31PmGYtG1pFehCD6gThhAvWMWZwa4xQXUn2GIaeN4yJvu8I44Ph9Kj6tNNdb4ZJj6o8P4KT62gniFsZwMr_M97eylW4l0JgjltaBD7sBWK42-iU5WST0s6B12GTZMMpK00pEQV9v0NX4LS05duLoppxueBc9LRv23mi4yeoskY9WRW8NrbcP1WgYkgpavM4PcFyNo3cmUbuTVMK3v375kf8wSX0L5PNwTU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2735872319</pqid></control><display><type>article</type><title>Tumor Growth Rate Informs Treatment Efficacy in Metastatic Pancreatic Adenocarcinoma: Application of a Growth and Regression Model to Pivotal Trial and Real-World Data</title><source>PubMed Central (PMC)</source><source>Oxford University Press Open Access</source><source>EZB Electronic Journals Library</source><creator>Yeh, Celine ; Zhou, Mengxi ; Sigel, Keith ; Jameson, Gayle ; White, Ruth ; Safyan, Rachael ; Saenger, Yvonne ; Hecht, Elizabeth ; Chabot, John ; Schreibman, Stephen ; Juzyna, Béata ; Ychou, Marc ; Conroy, Thierry ; Fojo, Tito ; Manji, Gulam A ; Von Hoff, Daniel ; Bates, Susan E</creator><creatorcontrib>Yeh, Celine ; Zhou, Mengxi ; Sigel, Keith ; Jameson, Gayle ; White, Ruth ; Safyan, Rachael ; Saenger, Yvonne ; Hecht, Elizabeth ; Chabot, John ; Schreibman, Stephen ; Juzyna, Béata ; Ychou, Marc ; Conroy, Thierry ; Fojo, Tito ; Manji, Gulam A ; Von Hoff, Daniel ; Bates, Susan E</creatorcontrib><description>Methods for screening agents earlier in development and strategies for conducting smaller randomized controlled trials (RCTs) are needed.
We retrospectively applied a tumor growth model to estimate the rates of growth of pancreatic cancer using radiographic tumor measurements or serum CA 19-9 values from 3033 patients with stages III-IV PDAC who were enrolled in 8 clinical trials or were included in 2 large real-world data sets.
g correlated inversely with OS and was consistently lower in the experimental arms than in the control arms of RCTs. At the individual patient level, g was significantly faster for lesions metastatic to the liver relative to those localized to the pancreas. Regardless of regimen, g increased toward the end of therapy, often by over 3-fold.
Growth rates of PDAC can be determined using radiographic tumor measurement and CA 19-9 values. g is inversely associated with OS and can differentiate therapies within the same trial and across trials. g can also be used to characterize changes in the behavior of an individual's PDAC, such as differences in the growth rate of lesions based on metastatic site, and the emergence of chemoresistance. We provide examples of how g can be used to benchmark phase II and III clinical data to a virtual reference arm to inform go/no go decisions and consider novel trial designs to optimize and accelerate drug development.</description><identifier>ISSN: 1083-7159</identifier><identifier>EISSN: 1549-490X</identifier><identifier>DOI: 10.1093/oncolo/oyac217</identifier><identifier>PMID: 36367377</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Adenocarcinoma - drug therapy ; Antimitotic agents ; Antineoplastic agents ; Care and treatment ; Development and progression ; Diagnosis ; Dosage and administration ; Gastrointestinal Cancer ; Humans ; Metastasis ; Pancreatic cancer ; Pancreatic Neoplasms ; Pancreatic Neoplasms - pathology ; Treatment Outcome</subject><ispartof>The oncologist (Dayton, Ohio), 2023-02, Vol.28 (2), p.139-148</ispartof><rights>Published by Oxford University Press 2022.</rights><rights>COPYRIGHT 2023 Oxford University Press</rights><rights>Published by Oxford University Press 2022. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-5524518815e545b4c18a9bc69171795655f04ff9c65b480ab872559886157bf73</citedby><cites>FETCH-LOGICAL-c457t-5524518815e545b4c18a9bc69171795655f04ff9c65b480ab872559886157bf73</cites><orcidid>0000-0002-4051-4861</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9907043/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9907043/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36367377$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yeh, Celine</creatorcontrib><creatorcontrib>Zhou, Mengxi</creatorcontrib><creatorcontrib>Sigel, Keith</creatorcontrib><creatorcontrib>Jameson, Gayle</creatorcontrib><creatorcontrib>White, Ruth</creatorcontrib><creatorcontrib>Safyan, Rachael</creatorcontrib><creatorcontrib>Saenger, Yvonne</creatorcontrib><creatorcontrib>Hecht, Elizabeth</creatorcontrib><creatorcontrib>Chabot, John</creatorcontrib><creatorcontrib>Schreibman, Stephen</creatorcontrib><creatorcontrib>Juzyna, Béata</creatorcontrib><creatorcontrib>Ychou, Marc</creatorcontrib><creatorcontrib>Conroy, Thierry</creatorcontrib><creatorcontrib>Fojo, Tito</creatorcontrib><creatorcontrib>Manji, Gulam A</creatorcontrib><creatorcontrib>Von Hoff, Daniel</creatorcontrib><creatorcontrib>Bates, Susan E</creatorcontrib><title>Tumor Growth Rate Informs Treatment Efficacy in Metastatic Pancreatic Adenocarcinoma: Application of a Growth and Regression Model to Pivotal Trial and Real-World Data</title><title>The oncologist (Dayton, Ohio)</title><addtitle>Oncologist</addtitle><description>Methods for screening agents earlier in development and strategies for conducting smaller randomized controlled trials (RCTs) are needed.
We retrospectively applied a tumor growth model to estimate the rates of growth of pancreatic cancer using radiographic tumor measurements or serum CA 19-9 values from 3033 patients with stages III-IV PDAC who were enrolled in 8 clinical trials or were included in 2 large real-world data sets.
g correlated inversely with OS and was consistently lower in the experimental arms than in the control arms of RCTs. At the individual patient level, g was significantly faster for lesions metastatic to the liver relative to those localized to the pancreas. Regardless of regimen, g increased toward the end of therapy, often by over 3-fold.
Growth rates of PDAC can be determined using radiographic tumor measurement and CA 19-9 values. g is inversely associated with OS and can differentiate therapies within the same trial and across trials. g can also be used to characterize changes in the behavior of an individual's PDAC, such as differences in the growth rate of lesions based on metastatic site, and the emergence of chemoresistance. We provide examples of how g can be used to benchmark phase II and III clinical data to a virtual reference arm to inform go/no go decisions and consider novel trial designs to optimize and accelerate drug development.</description><subject>Adenocarcinoma - drug therapy</subject><subject>Antimitotic agents</subject><subject>Antineoplastic agents</subject><subject>Care and treatment</subject><subject>Development and progression</subject><subject>Diagnosis</subject><subject>Dosage and administration</subject><subject>Gastrointestinal Cancer</subject><subject>Humans</subject><subject>Metastasis</subject><subject>Pancreatic cancer</subject><subject>Pancreatic Neoplasms</subject><subject>Pancreatic Neoplasms - pathology</subject><subject>Treatment Outcome</subject><issn>1083-7159</issn><issn>1549-490X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNptklFrFDEQxxdRbK2--igBX3zZNtlsNhsfhKPWWmixlBN9C7PZ5BrJJtckV7lP5Nc0y12LQgkkQ-Y3_5mEf1W9JfiYYEFPglfBhZOwBdUQ_qw6JKwVdSvwz-clxj2tOWHioHqV0i-MS0ibl9UB7WjHKeeH1Z_lZgoRncfwO9-iG8gaXXgT4pTQMmrIk_YZnRljFagtsh5d6QwpQ7YKXYNXM1PCxah9UBCV9WGCj2ixXrtSkm3wKBgEDw3Aj-hGr6JOaU5dhVE7lAO6tvchgys9bdl3FLj6R4huRJ8hw-vqhQGX9Jv9eVR9_3K2PP1aX347vzhdXNaqZTzXjDUtI31PmGYtG1pFehCD6gThhAvWMWZwa4xQXUn2GIaeN4yJvu8I44Ph9Kj6tNNdb4ZJj6o8P4KT62gniFsZwMr_M97eylW4l0JgjltaBD7sBWK42-iU5WST0s6B12GTZMMpK00pEQV9v0NX4LS05duLoppxueBc9LRv23mi4yeoskY9WRW8NrbcP1WgYkgpavM4PcFyNo3cmUbuTVMK3v375kf8wSX0L5PNwTU</recordid><startdate>20230208</startdate><enddate>20230208</enddate><creator>Yeh, Celine</creator><creator>Zhou, Mengxi</creator><creator>Sigel, Keith</creator><creator>Jameson, Gayle</creator><creator>White, Ruth</creator><creator>Safyan, Rachael</creator><creator>Saenger, Yvonne</creator><creator>Hecht, Elizabeth</creator><creator>Chabot, John</creator><creator>Schreibman, Stephen</creator><creator>Juzyna, Béata</creator><creator>Ychou, Marc</creator><creator>Conroy, Thierry</creator><creator>Fojo, Tito</creator><creator>Manji, Gulam A</creator><creator>Von Hoff, Daniel</creator><creator>Bates, Susan E</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4051-4861</orcidid></search><sort><creationdate>20230208</creationdate><title>Tumor Growth Rate Informs Treatment Efficacy in Metastatic Pancreatic Adenocarcinoma: Application of a Growth and Regression Model to Pivotal Trial and Real-World Data</title><author>Yeh, Celine ; Zhou, Mengxi ; Sigel, Keith ; Jameson, Gayle ; White, Ruth ; Safyan, Rachael ; Saenger, Yvonne ; Hecht, Elizabeth ; Chabot, John ; Schreibman, Stephen ; Juzyna, Béata ; Ychou, Marc ; Conroy, Thierry ; Fojo, Tito ; Manji, Gulam A ; Von Hoff, Daniel ; Bates, Susan E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-5524518815e545b4c18a9bc69171795655f04ff9c65b480ab872559886157bf73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adenocarcinoma - drug therapy</topic><topic>Antimitotic agents</topic><topic>Antineoplastic agents</topic><topic>Care and treatment</topic><topic>Development and progression</topic><topic>Diagnosis</topic><topic>Dosage and administration</topic><topic>Gastrointestinal Cancer</topic><topic>Humans</topic><topic>Metastasis</topic><topic>Pancreatic cancer</topic><topic>Pancreatic Neoplasms</topic><topic>Pancreatic Neoplasms - pathology</topic><topic>Treatment Outcome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yeh, Celine</creatorcontrib><creatorcontrib>Zhou, Mengxi</creatorcontrib><creatorcontrib>Sigel, Keith</creatorcontrib><creatorcontrib>Jameson, Gayle</creatorcontrib><creatorcontrib>White, Ruth</creatorcontrib><creatorcontrib>Safyan, Rachael</creatorcontrib><creatorcontrib>Saenger, Yvonne</creatorcontrib><creatorcontrib>Hecht, Elizabeth</creatorcontrib><creatorcontrib>Chabot, John</creatorcontrib><creatorcontrib>Schreibman, Stephen</creatorcontrib><creatorcontrib>Juzyna, Béata</creatorcontrib><creatorcontrib>Ychou, Marc</creatorcontrib><creatorcontrib>Conroy, Thierry</creatorcontrib><creatorcontrib>Fojo, Tito</creatorcontrib><creatorcontrib>Manji, Gulam A</creatorcontrib><creatorcontrib>Von Hoff, Daniel</creatorcontrib><creatorcontrib>Bates, Susan E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The oncologist (Dayton, Ohio)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yeh, Celine</au><au>Zhou, Mengxi</au><au>Sigel, Keith</au><au>Jameson, Gayle</au><au>White, Ruth</au><au>Safyan, Rachael</au><au>Saenger, Yvonne</au><au>Hecht, Elizabeth</au><au>Chabot, John</au><au>Schreibman, Stephen</au><au>Juzyna, Béata</au><au>Ychou, Marc</au><au>Conroy, Thierry</au><au>Fojo, Tito</au><au>Manji, Gulam A</au><au>Von Hoff, Daniel</au><au>Bates, Susan E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tumor Growth Rate Informs Treatment Efficacy in Metastatic Pancreatic Adenocarcinoma: Application of a Growth and Regression Model to Pivotal Trial and Real-World Data</atitle><jtitle>The oncologist (Dayton, Ohio)</jtitle><addtitle>Oncologist</addtitle><date>2023-02-08</date><risdate>2023</risdate><volume>28</volume><issue>2</issue><spage>139</spage><epage>148</epage><pages>139-148</pages><issn>1083-7159</issn><eissn>1549-490X</eissn><abstract>Methods for screening agents earlier in development and strategies for conducting smaller randomized controlled trials (RCTs) are needed.
We retrospectively applied a tumor growth model to estimate the rates of growth of pancreatic cancer using radiographic tumor measurements or serum CA 19-9 values from 3033 patients with stages III-IV PDAC who were enrolled in 8 clinical trials or were included in 2 large real-world data sets.
g correlated inversely with OS and was consistently lower in the experimental arms than in the control arms of RCTs. At the individual patient level, g was significantly faster for lesions metastatic to the liver relative to those localized to the pancreas. Regardless of regimen, g increased toward the end of therapy, often by over 3-fold.
Growth rates of PDAC can be determined using radiographic tumor measurement and CA 19-9 values. g is inversely associated with OS and can differentiate therapies within the same trial and across trials. g can also be used to characterize changes in the behavior of an individual's PDAC, such as differences in the growth rate of lesions based on metastatic site, and the emergence of chemoresistance. We provide examples of how g can be used to benchmark phase II and III clinical data to a virtual reference arm to inform go/no go decisions and consider novel trial designs to optimize and accelerate drug development.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>36367377</pmid><doi>10.1093/oncolo/oyac217</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4051-4861</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1083-7159 |
ispartof | The oncologist (Dayton, Ohio), 2023-02, Vol.28 (2), p.139-148 |
issn | 1083-7159 1549-490X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9907043 |
source | PubMed Central (PMC); Oxford University Press Open Access; EZB Electronic Journals Library |
subjects | Adenocarcinoma - drug therapy Antimitotic agents Antineoplastic agents Care and treatment Development and progression Diagnosis Dosage and administration Gastrointestinal Cancer Humans Metastasis Pancreatic cancer Pancreatic Neoplasms Pancreatic Neoplasms - pathology Treatment Outcome |
title | Tumor Growth Rate Informs Treatment Efficacy in Metastatic Pancreatic Adenocarcinoma: Application of a Growth and Regression Model to Pivotal Trial and Real-World Data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A10%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tumor%20Growth%20Rate%20Informs%20Treatment%20Efficacy%20in%20Metastatic%20Pancreatic%20Adenocarcinoma:%20Application%20of%20a%20Growth%20and%20Regression%20Model%20to%20Pivotal%20Trial%20and%20Real-World%20Data&rft.jtitle=The%20oncologist%20(Dayton,%20Ohio)&rft.au=Yeh,%20Celine&rft.date=2023-02-08&rft.volume=28&rft.issue=2&rft.spage=139&rft.epage=148&rft.pages=139-148&rft.issn=1083-7159&rft.eissn=1549-490X&rft_id=info:doi/10.1093/oncolo/oyac217&rft_dat=%3Cgale_pubme%3EA779838447%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c457t-5524518815e545b4c18a9bc69171795655f04ff9c65b480ab872559886157bf73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2735872319&rft_id=info:pmid/36367377&rft_galeid=A779838447&rfr_iscdi=true |