Loading…
Reflection on modern methods: risk ratio regression-simple concept yet complex computation
The risk ratio (RR) is the ratio of the outcome among the exposed to risk of the outcome among the unexposed. This is a simple concept, which makes one wonder why it has not gained the same popularity as the odds ratio. Using logistic regression to estimate the odds ratio is quite common in epidemio...
Saved in:
Published in: | International journal of epidemiology 2023-02, Vol.52 (1), p.309-314 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c381t-f28823f421a7a81114b4c2abcb40ece92d42faa5c23ec1e091a168ef8a63bf403 |
---|---|
cites | cdi_FETCH-LOGICAL-c381t-f28823f421a7a81114b4c2abcb40ece92d42faa5c23ec1e091a168ef8a63bf403 |
container_end_page | 314 |
container_issue | 1 |
container_start_page | 309 |
container_title | International journal of epidemiology |
container_volume | 52 |
creator | Mittinty, Murthy N Lynch, John |
description | The risk ratio (RR) is the ratio of the outcome among the exposed to risk of the outcome among the unexposed. This is a simple concept, which makes one wonder why it has not gained the same popularity as the odds ratio. Using logistic regression to estimate the odds ratio is quite common in epidemiology and interpreting the odds ratio as a risk ratio, under the assumption that the outcome is rare, is also common. On one hand, estimating the odds ratio is simple but interpreting it is hard. On the other, estimating the risk ratio is challenging but its interpretation is straightforward. Issues with estimating risk ratio still remain after four decades. These issues include convergence of the algorithm, the choice of regression specification (e.g. log-binomial, Poisson) and many more. Various new computational methods are available which help overcome the issue of convergence and provide doubly robust estimates of RR. |
doi_str_mv | 10.1093/ije/dyac220 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9908057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2739431684</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-f28823f421a7a81114b4c2abcb40ece92d42faa5c23ec1e091a168ef8a63bf403</originalsourceid><addsrcrecordid>eNpVkd1LwzAUxYMobk6ffJc-ClKXr7apD4IMv2AgiL74EtL0dstsm5m04v57MzeHQuCEe38595KD0CnBlwTnbGwWMC5XSlOK99CQ8JTHLBXJPhpihnGcZBkZoCPvFxgTznl-iAYs5STlLBuit2eoatCdsW0UTmNLcEGgm9vSX0XO-PfIqdCOHMwceB_A2JtmWUOkbath2UUr6MJ9Xfr60b5bP2iP0UGlag8nWx2h17vbl8lDPH26f5zcTGPNBOniigpBWcUpUZkShBBecE1VoQuOQUNOS04rpRJNGWgCOCeKpAIqoVJWVByzEbre-C77ooFSQ9s5VculM41yK2mVkf87rZnLmf2UeY4FTrJgcL41cPajB9_JxngNda1asL2XNGM5Z2EoD-jFBtXOeu-g2o0hWK7TkCENuU0j0Gd_N9uxv9_PvgGG6YpC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2739431684</pqid></control><display><type>article</type><title>Reflection on modern methods: risk ratio regression-simple concept yet complex computation</title><source>Oxford Journals Online</source><creator>Mittinty, Murthy N ; Lynch, John</creator><creatorcontrib>Mittinty, Murthy N ; Lynch, John</creatorcontrib><description>The risk ratio (RR) is the ratio of the outcome among the exposed to risk of the outcome among the unexposed. This is a simple concept, which makes one wonder why it has not gained the same popularity as the odds ratio. Using logistic regression to estimate the odds ratio is quite common in epidemiology and interpreting the odds ratio as a risk ratio, under the assumption that the outcome is rare, is also common. On one hand, estimating the odds ratio is simple but interpreting it is hard. On the other, estimating the risk ratio is challenging but its interpretation is straightforward. Issues with estimating risk ratio still remain after four decades. These issues include convergence of the algorithm, the choice of regression specification (e.g. log-binomial, Poisson) and many more. Various new computational methods are available which help overcome the issue of convergence and provide doubly robust estimates of RR.</description><identifier>ISSN: 0300-5771</identifier><identifier>EISSN: 1464-3685</identifier><identifier>DOI: 10.1093/ije/dyac220</identifier><identifier>PMID: 36416437</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Education Corner ; Humans ; Logistic Models ; Odds Ratio</subject><ispartof>International journal of epidemiology, 2023-02, Vol.52 (1), p.309-314</ispartof><rights>The Author(s) 2022. Published by Oxford University Press on behalf of the International Epidemiological Association.</rights><rights>The Author(s) 2022. Published by Oxford University Press on behalf of the International Epidemiological Association. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-f28823f421a7a81114b4c2abcb40ece92d42faa5c23ec1e091a168ef8a63bf403</citedby><cites>FETCH-LOGICAL-c381t-f28823f421a7a81114b4c2abcb40ece92d42faa5c23ec1e091a168ef8a63bf403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36416437$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mittinty, Murthy N</creatorcontrib><creatorcontrib>Lynch, John</creatorcontrib><title>Reflection on modern methods: risk ratio regression-simple concept yet complex computation</title><title>International journal of epidemiology</title><addtitle>Int J Epidemiol</addtitle><description>The risk ratio (RR) is the ratio of the outcome among the exposed to risk of the outcome among the unexposed. This is a simple concept, which makes one wonder why it has not gained the same popularity as the odds ratio. Using logistic regression to estimate the odds ratio is quite common in epidemiology and interpreting the odds ratio as a risk ratio, under the assumption that the outcome is rare, is also common. On one hand, estimating the odds ratio is simple but interpreting it is hard. On the other, estimating the risk ratio is challenging but its interpretation is straightforward. Issues with estimating risk ratio still remain after four decades. These issues include convergence of the algorithm, the choice of regression specification (e.g. log-binomial, Poisson) and many more. Various new computational methods are available which help overcome the issue of convergence and provide doubly robust estimates of RR.</description><subject>Education Corner</subject><subject>Humans</subject><subject>Logistic Models</subject><subject>Odds Ratio</subject><issn>0300-5771</issn><issn>1464-3685</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpVkd1LwzAUxYMobk6ffJc-ClKXr7apD4IMv2AgiL74EtL0dstsm5m04v57MzeHQuCEe38595KD0CnBlwTnbGwWMC5XSlOK99CQ8JTHLBXJPhpihnGcZBkZoCPvFxgTznl-iAYs5STlLBuit2eoatCdsW0UTmNLcEGgm9vSX0XO-PfIqdCOHMwceB_A2JtmWUOkbath2UUr6MJ9Xfr60b5bP2iP0UGlag8nWx2h17vbl8lDPH26f5zcTGPNBOniigpBWcUpUZkShBBecE1VoQuOQUNOS04rpRJNGWgCOCeKpAIqoVJWVByzEbre-C77ooFSQ9s5VculM41yK2mVkf87rZnLmf2UeY4FTrJgcL41cPajB9_JxngNda1asL2XNGM5Z2EoD-jFBtXOeu-g2o0hWK7TkCENuU0j0Gd_N9uxv9_PvgGG6YpC</recordid><startdate>20230208</startdate><enddate>20230208</enddate><creator>Mittinty, Murthy N</creator><creator>Lynch, John</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20230208</creationdate><title>Reflection on modern methods: risk ratio regression-simple concept yet complex computation</title><author>Mittinty, Murthy N ; Lynch, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-f28823f421a7a81114b4c2abcb40ece92d42faa5c23ec1e091a168ef8a63bf403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Education Corner</topic><topic>Humans</topic><topic>Logistic Models</topic><topic>Odds Ratio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mittinty, Murthy N</creatorcontrib><creatorcontrib>Lynch, John</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of epidemiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mittinty, Murthy N</au><au>Lynch, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reflection on modern methods: risk ratio regression-simple concept yet complex computation</atitle><jtitle>International journal of epidemiology</jtitle><addtitle>Int J Epidemiol</addtitle><date>2023-02-08</date><risdate>2023</risdate><volume>52</volume><issue>1</issue><spage>309</spage><epage>314</epage><pages>309-314</pages><issn>0300-5771</issn><eissn>1464-3685</eissn><abstract>The risk ratio (RR) is the ratio of the outcome among the exposed to risk of the outcome among the unexposed. This is a simple concept, which makes one wonder why it has not gained the same popularity as the odds ratio. Using logistic regression to estimate the odds ratio is quite common in epidemiology and interpreting the odds ratio as a risk ratio, under the assumption that the outcome is rare, is also common. On one hand, estimating the odds ratio is simple but interpreting it is hard. On the other, estimating the risk ratio is challenging but its interpretation is straightforward. Issues with estimating risk ratio still remain after four decades. These issues include convergence of the algorithm, the choice of regression specification (e.g. log-binomial, Poisson) and many more. Various new computational methods are available which help overcome the issue of convergence and provide doubly robust estimates of RR.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>36416437</pmid><doi>10.1093/ije/dyac220</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0300-5771 |
ispartof | International journal of epidemiology, 2023-02, Vol.52 (1), p.309-314 |
issn | 0300-5771 1464-3685 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9908057 |
source | Oxford Journals Online |
subjects | Education Corner Humans Logistic Models Odds Ratio |
title | Reflection on modern methods: risk ratio regression-simple concept yet complex computation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A19%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reflection%20on%20modern%20methods:%20risk%20ratio%20regression-simple%20concept%20yet%20complex%20computation&rft.jtitle=International%20journal%20of%20epidemiology&rft.au=Mittinty,%20Murthy%20N&rft.date=2023-02-08&rft.volume=52&rft.issue=1&rft.spage=309&rft.epage=314&rft.pages=309-314&rft.issn=0300-5771&rft.eissn=1464-3685&rft_id=info:doi/10.1093/ije/dyac220&rft_dat=%3Cproquest_pubme%3E2739431684%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c381t-f28823f421a7a81114b4c2abcb40ece92d42faa5c23ec1e091a168ef8a63bf403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2739431684&rft_id=info:pmid/36416437&rfr_iscdi=true |