Loading…
A genome-scale screen for synthetic drivers of T cell proliferation
The engineering of autologous patient T cells for adoptive cell therapies has revolutionized the treatment of several types of cancer 1 . However, further improvements are needed to increase response and cure rates. CRISPR-based loss-of-function screens have been limited to negative regulators of T...
Saved in:
Published in: | Nature (London) 2022-03, Vol.603 (7902), p.728-735 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c474t-a5319254b15ca733a5d32ceaad22fdbc4764cc77a0fd9238d3b183a7e0fccd763 |
---|---|
cites | cdi_FETCH-LOGICAL-c474t-a5319254b15ca733a5d32ceaad22fdbc4764cc77a0fd9238d3b183a7e0fccd763 |
container_end_page | 735 |
container_issue | 7902 |
container_start_page | 728 |
container_title | Nature (London) |
container_volume | 603 |
creator | Legut, Mateusz Gajic, Zoran Guarino, Maria Daniloski, Zharko Rahman, Jahan A. Xue, Xinhe Lu, Congyi Lu, Lu Mimitou, Eleni P. Hao, Stephanie Davoli, Teresa Diefenbach, Catherine Smibert, Peter Sanjana, Neville E. |
description | The engineering of autologous patient T cells for adoptive cell therapies has revolutionized the treatment of several types of cancer
1
. However, further improvements are needed to increase response and cure rates. CRISPR-based loss-of-function screens have been limited to negative regulators of T cell functions
2
–
4
and raise safety concerns owing to the permanent modification of the genome. Here we identify positive regulators of T cell functions through overexpression of around 12,000 barcoded human open reading frames (ORFs). The top-ranked genes increased the proliferation and activation of primary human CD4
+
and CD8
+
T cells and their secretion of key cytokines such as interleukin-2 and interferon-γ. In addition, we developed the single-cell genomics method OverCITE-seq for high-throughput quantification of the transcriptome and surface antigens in ORF-engineered T cells. The top-ranked ORF—lymphotoxin-β receptor (LTBR)—is typically expressed in myeloid cells but absent in lymphocytes. When overexpressed in T cells, LTBR induced profound transcriptional and epigenomic remodelling, leading to increased T cell effector functions and resistance to exhaustion in chronic stimulation settings through constitutive activation of the canonical NF-κB pathway.
LTBR
and other highly ranked genes improved the antigen-specific responses of chimeric antigen receptor T cells and γδ T cells, highlighting their potential for future cancer-agnostic therapies
5
. Our results provide several strategies for improving next-generation T cell therapies by the induction of synthetic cell programmes.
A genome-scale gain-of-function screen using overexpression of nearly 12,000 open reading frames (ORFs) identifies positive regulators of human T cell function and suggests that ORF-based screens could be applied clinically to improve T cell therapies. |
doi_str_mv | 10.1038/s41586-022-04494-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9908437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2643282896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-a5319254b15ca733a5d32ceaad22fdbc4764cc77a0fd9238d3b183a7e0fccd763</originalsourceid><addsrcrecordid>eNp9kUtLAzEUhYMoWh9_wIUE3LiJ5jnJbAQpvkBwU9chzdypI9OkJlOh_94Zq_WxcHUX97vnnsNB6JjRc0aFuciSKVMQyjmhUpaS6C00YlIXRBZGb6MRpdwQakSxh_ZzfqGUKqblLtoTipeFUWqExld4BiHOgWTvWsDZJ4CA65hwXoXuGbrG4yo1b5AyjjWeYA9tixcptk0NyXVNDIdop3ZthqPPeYCebq4n4zvy8Hh7P756IF5q2RGnBCu5klOmvNNCOFUJ7sG5ivO6mvZQIb3X2tG6KrkwlZgyI5wGWntf6UIcoMu17mI5nUPlIXTJtXaRmrlLKxtdY39vQvNsZ_HNliU1Uuhe4OxTIMXXJeTOzps85HEB4jJbXkgqBO3JHj39g77EZQp9vIES3HBTDo74mvIp5pyg3phh1A4d2XVHtu_IfnRkBxcnP2NsTr5K6QGxBnK_CjNI37__kX0HdvWdYw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2643282896</pqid></control><display><type>article</type><title>A genome-scale screen for synthetic drivers of T cell proliferation</title><source>Springer Nature - Connect here FIRST to enable access</source><creator>Legut, Mateusz ; Gajic, Zoran ; Guarino, Maria ; Daniloski, Zharko ; Rahman, Jahan A. ; Xue, Xinhe ; Lu, Congyi ; Lu, Lu ; Mimitou, Eleni P. ; Hao, Stephanie ; Davoli, Teresa ; Diefenbach, Catherine ; Smibert, Peter ; Sanjana, Neville E.</creator><creatorcontrib>Legut, Mateusz ; Gajic, Zoran ; Guarino, Maria ; Daniloski, Zharko ; Rahman, Jahan A. ; Xue, Xinhe ; Lu, Congyi ; Lu, Lu ; Mimitou, Eleni P. ; Hao, Stephanie ; Davoli, Teresa ; Diefenbach, Catherine ; Smibert, Peter ; Sanjana, Neville E.</creatorcontrib><description>The engineering of autologous patient T cells for adoptive cell therapies has revolutionized the treatment of several types of cancer
1
. However, further improvements are needed to increase response and cure rates. CRISPR-based loss-of-function screens have been limited to negative regulators of T cell functions
2
–
4
and raise safety concerns owing to the permanent modification of the genome. Here we identify positive regulators of T cell functions through overexpression of around 12,000 barcoded human open reading frames (ORFs). The top-ranked genes increased the proliferation and activation of primary human CD4
+
and CD8
+
T cells and their secretion of key cytokines such as interleukin-2 and interferon-γ. In addition, we developed the single-cell genomics method OverCITE-seq for high-throughput quantification of the transcriptome and surface antigens in ORF-engineered T cells. The top-ranked ORF—lymphotoxin-β receptor (LTBR)—is typically expressed in myeloid cells but absent in lymphocytes. When overexpressed in T cells, LTBR induced profound transcriptional and epigenomic remodelling, leading to increased T cell effector functions and resistance to exhaustion in chronic stimulation settings through constitutive activation of the canonical NF-κB pathway.
LTBR
and other highly ranked genes improved the antigen-specific responses of chimeric antigen receptor T cells and γδ T cells, highlighting their potential for future cancer-agnostic therapies
5
. Our results provide several strategies for improving next-generation T cell therapies by the induction of synthetic cell programmes.
A genome-scale gain-of-function screen using overexpression of nearly 12,000 open reading frames (ORFs) identifies positive regulators of human T cell function and suggests that ORF-based screens could be applied clinically to improve T cell therapies.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-022-04494-7</identifier><identifier>PMID: 35296855</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>38 ; 38/91 ; 42/44 ; 631/250/1619/554 ; 631/250/248 ; 631/61/191 ; 631/67/580 ; 96 ; 96/106 ; 96/31 ; Antigens ; CD19 antigen ; CD28 antigen ; CD3 antigen ; CD4 antigen ; CD4-Positive T-Lymphocytes ; CD8 antigen ; CD8-Positive T-Lymphocytes ; Cell cycle ; Cell growth ; Cell Proliferation ; CRISPR ; Cytokines ; Cytotoxicity ; Gene expression ; Genomes ; Genomics ; Humanities and Social Sciences ; Humans ; Immunotherapy, Adoptive ; Interleukin 1 ; Interleukin 2 ; Lymphocyte Activation - genetics ; Lymphocytes ; Lymphocytes T ; multidisciplinary ; Neoplasms ; Science ; Science (multidisciplinary) ; T cell receptors ; Toxicity ; Tumors</subject><ispartof>Nature (London), 2022-03, Vol.603 (7902), p.728-735</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022</rights><rights>2022. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>Copyright Nature Publishing Group Mar 24, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-a5319254b15ca733a5d32ceaad22fdbc4764cc77a0fd9238d3b183a7e0fccd763</citedby><cites>FETCH-LOGICAL-c474t-a5319254b15ca733a5d32ceaad22fdbc4764cc77a0fd9238d3b183a7e0fccd763</cites><orcidid>0000-0001-9737-6394 ; 0000-0003-0772-1647 ; 0000-0002-1504-0027 ; 0000-0002-8672-3757 ; 0000-0001-8755-5890 ; 0000-0002-1700-9699 ; 0000-0002-7343-7161 ; 0000-0002-3453-0849 ; 0000-0002-8810-6971</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35296855$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Legut, Mateusz</creatorcontrib><creatorcontrib>Gajic, Zoran</creatorcontrib><creatorcontrib>Guarino, Maria</creatorcontrib><creatorcontrib>Daniloski, Zharko</creatorcontrib><creatorcontrib>Rahman, Jahan A.</creatorcontrib><creatorcontrib>Xue, Xinhe</creatorcontrib><creatorcontrib>Lu, Congyi</creatorcontrib><creatorcontrib>Lu, Lu</creatorcontrib><creatorcontrib>Mimitou, Eleni P.</creatorcontrib><creatorcontrib>Hao, Stephanie</creatorcontrib><creatorcontrib>Davoli, Teresa</creatorcontrib><creatorcontrib>Diefenbach, Catherine</creatorcontrib><creatorcontrib>Smibert, Peter</creatorcontrib><creatorcontrib>Sanjana, Neville E.</creatorcontrib><title>A genome-scale screen for synthetic drivers of T cell proliferation</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>The engineering of autologous patient T cells for adoptive cell therapies has revolutionized the treatment of several types of cancer
1
. However, further improvements are needed to increase response and cure rates. CRISPR-based loss-of-function screens have been limited to negative regulators of T cell functions
2
–
4
and raise safety concerns owing to the permanent modification of the genome. Here we identify positive regulators of T cell functions through overexpression of around 12,000 barcoded human open reading frames (ORFs). The top-ranked genes increased the proliferation and activation of primary human CD4
+
and CD8
+
T cells and their secretion of key cytokines such as interleukin-2 and interferon-γ. In addition, we developed the single-cell genomics method OverCITE-seq for high-throughput quantification of the transcriptome and surface antigens in ORF-engineered T cells. The top-ranked ORF—lymphotoxin-β receptor (LTBR)—is typically expressed in myeloid cells but absent in lymphocytes. When overexpressed in T cells, LTBR induced profound transcriptional and epigenomic remodelling, leading to increased T cell effector functions and resistance to exhaustion in chronic stimulation settings through constitutive activation of the canonical NF-κB pathway.
LTBR
and other highly ranked genes improved the antigen-specific responses of chimeric antigen receptor T cells and γδ T cells, highlighting their potential for future cancer-agnostic therapies
5
. Our results provide several strategies for improving next-generation T cell therapies by the induction of synthetic cell programmes.
A genome-scale gain-of-function screen using overexpression of nearly 12,000 open reading frames (ORFs) identifies positive regulators of human T cell function and suggests that ORF-based screens could be applied clinically to improve T cell therapies.</description><subject>38</subject><subject>38/91</subject><subject>42/44</subject><subject>631/250/1619/554</subject><subject>631/250/248</subject><subject>631/61/191</subject><subject>631/67/580</subject><subject>96</subject><subject>96/106</subject><subject>96/31</subject><subject>Antigens</subject><subject>CD19 antigen</subject><subject>CD28 antigen</subject><subject>CD3 antigen</subject><subject>CD4 antigen</subject><subject>CD4-Positive T-Lymphocytes</subject><subject>CD8 antigen</subject><subject>CD8-Positive T-Lymphocytes</subject><subject>Cell cycle</subject><subject>Cell growth</subject><subject>Cell Proliferation</subject><subject>CRISPR</subject><subject>Cytokines</subject><subject>Cytotoxicity</subject><subject>Gene expression</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Immunotherapy, Adoptive</subject><subject>Interleukin 1</subject><subject>Interleukin 2</subject><subject>Lymphocyte Activation - genetics</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>multidisciplinary</subject><subject>Neoplasms</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>T cell receptors</subject><subject>Toxicity</subject><subject>Tumors</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kUtLAzEUhYMoWh9_wIUE3LiJ5jnJbAQpvkBwU9chzdypI9OkJlOh_94Zq_WxcHUX97vnnsNB6JjRc0aFuciSKVMQyjmhUpaS6C00YlIXRBZGb6MRpdwQakSxh_ZzfqGUKqblLtoTipeFUWqExld4BiHOgWTvWsDZJ4CA65hwXoXuGbrG4yo1b5AyjjWeYA9tixcptk0NyXVNDIdop3ZthqPPeYCebq4n4zvy8Hh7P756IF5q2RGnBCu5klOmvNNCOFUJ7sG5ivO6mvZQIb3X2tG6KrkwlZgyI5wGWntf6UIcoMu17mI5nUPlIXTJtXaRmrlLKxtdY39vQvNsZ_HNliU1Uuhe4OxTIMXXJeTOzps85HEB4jJbXkgqBO3JHj39g77EZQp9vIES3HBTDo74mvIp5pyg3phh1A4d2XVHtu_IfnRkBxcnP2NsTr5K6QGxBnK_CjNI37__kX0HdvWdYw</recordid><startdate>20220324</startdate><enddate>20220324</enddate><creator>Legut, Mateusz</creator><creator>Gajic, Zoran</creator><creator>Guarino, Maria</creator><creator>Daniloski, Zharko</creator><creator>Rahman, Jahan A.</creator><creator>Xue, Xinhe</creator><creator>Lu, Congyi</creator><creator>Lu, Lu</creator><creator>Mimitou, Eleni P.</creator><creator>Hao, Stephanie</creator><creator>Davoli, Teresa</creator><creator>Diefenbach, Catherine</creator><creator>Smibert, Peter</creator><creator>Sanjana, Neville E.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9737-6394</orcidid><orcidid>https://orcid.org/0000-0003-0772-1647</orcidid><orcidid>https://orcid.org/0000-0002-1504-0027</orcidid><orcidid>https://orcid.org/0000-0002-8672-3757</orcidid><orcidid>https://orcid.org/0000-0001-8755-5890</orcidid><orcidid>https://orcid.org/0000-0002-1700-9699</orcidid><orcidid>https://orcid.org/0000-0002-7343-7161</orcidid><orcidid>https://orcid.org/0000-0002-3453-0849</orcidid><orcidid>https://orcid.org/0000-0002-8810-6971</orcidid></search><sort><creationdate>20220324</creationdate><title>A genome-scale screen for synthetic drivers of T cell proliferation</title><author>Legut, Mateusz ; Gajic, Zoran ; Guarino, Maria ; Daniloski, Zharko ; Rahman, Jahan A. ; Xue, Xinhe ; Lu, Congyi ; Lu, Lu ; Mimitou, Eleni P. ; Hao, Stephanie ; Davoli, Teresa ; Diefenbach, Catherine ; Smibert, Peter ; Sanjana, Neville E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-a5319254b15ca733a5d32ceaad22fdbc4764cc77a0fd9238d3b183a7e0fccd763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>38</topic><topic>38/91</topic><topic>42/44</topic><topic>631/250/1619/554</topic><topic>631/250/248</topic><topic>631/61/191</topic><topic>631/67/580</topic><topic>96</topic><topic>96/106</topic><topic>96/31</topic><topic>Antigens</topic><topic>CD19 antigen</topic><topic>CD28 antigen</topic><topic>CD3 antigen</topic><topic>CD4 antigen</topic><topic>CD4-Positive T-Lymphocytes</topic><topic>CD8 antigen</topic><topic>CD8-Positive T-Lymphocytes</topic><topic>Cell cycle</topic><topic>Cell growth</topic><topic>Cell Proliferation</topic><topic>CRISPR</topic><topic>Cytokines</topic><topic>Cytotoxicity</topic><topic>Gene expression</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Immunotherapy, Adoptive</topic><topic>Interleukin 1</topic><topic>Interleukin 2</topic><topic>Lymphocyte Activation - genetics</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>multidisciplinary</topic><topic>Neoplasms</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>T cell receptors</topic><topic>Toxicity</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Legut, Mateusz</creatorcontrib><creatorcontrib>Gajic, Zoran</creatorcontrib><creatorcontrib>Guarino, Maria</creatorcontrib><creatorcontrib>Daniloski, Zharko</creatorcontrib><creatorcontrib>Rahman, Jahan A.</creatorcontrib><creatorcontrib>Xue, Xinhe</creatorcontrib><creatorcontrib>Lu, Congyi</creatorcontrib><creatorcontrib>Lu, Lu</creatorcontrib><creatorcontrib>Mimitou, Eleni P.</creatorcontrib><creatorcontrib>Hao, Stephanie</creatorcontrib><creatorcontrib>Davoli, Teresa</creatorcontrib><creatorcontrib>Diefenbach, Catherine</creatorcontrib><creatorcontrib>Smibert, Peter</creatorcontrib><creatorcontrib>Sanjana, Neville E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Legut, Mateusz</au><au>Gajic, Zoran</au><au>Guarino, Maria</au><au>Daniloski, Zharko</au><au>Rahman, Jahan A.</au><au>Xue, Xinhe</au><au>Lu, Congyi</au><au>Lu, Lu</au><au>Mimitou, Eleni P.</au><au>Hao, Stephanie</au><au>Davoli, Teresa</au><au>Diefenbach, Catherine</au><au>Smibert, Peter</au><au>Sanjana, Neville E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A genome-scale screen for synthetic drivers of T cell proliferation</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2022-03-24</date><risdate>2022</risdate><volume>603</volume><issue>7902</issue><spage>728</spage><epage>735</epage><pages>728-735</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>The engineering of autologous patient T cells for adoptive cell therapies has revolutionized the treatment of several types of cancer
1
. However, further improvements are needed to increase response and cure rates. CRISPR-based loss-of-function screens have been limited to negative regulators of T cell functions
2
–
4
and raise safety concerns owing to the permanent modification of the genome. Here we identify positive regulators of T cell functions through overexpression of around 12,000 barcoded human open reading frames (ORFs). The top-ranked genes increased the proliferation and activation of primary human CD4
+
and CD8
+
T cells and their secretion of key cytokines such as interleukin-2 and interferon-γ. In addition, we developed the single-cell genomics method OverCITE-seq for high-throughput quantification of the transcriptome and surface antigens in ORF-engineered T cells. The top-ranked ORF—lymphotoxin-β receptor (LTBR)—is typically expressed in myeloid cells but absent in lymphocytes. When overexpressed in T cells, LTBR induced profound transcriptional and epigenomic remodelling, leading to increased T cell effector functions and resistance to exhaustion in chronic stimulation settings through constitutive activation of the canonical NF-κB pathway.
LTBR
and other highly ranked genes improved the antigen-specific responses of chimeric antigen receptor T cells and γδ T cells, highlighting their potential for future cancer-agnostic therapies
5
. Our results provide several strategies for improving next-generation T cell therapies by the induction of synthetic cell programmes.
A genome-scale gain-of-function screen using overexpression of nearly 12,000 open reading frames (ORFs) identifies positive regulators of human T cell function and suggests that ORF-based screens could be applied clinically to improve T cell therapies.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35296855</pmid><doi>10.1038/s41586-022-04494-7</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9737-6394</orcidid><orcidid>https://orcid.org/0000-0003-0772-1647</orcidid><orcidid>https://orcid.org/0000-0002-1504-0027</orcidid><orcidid>https://orcid.org/0000-0002-8672-3757</orcidid><orcidid>https://orcid.org/0000-0001-8755-5890</orcidid><orcidid>https://orcid.org/0000-0002-1700-9699</orcidid><orcidid>https://orcid.org/0000-0002-7343-7161</orcidid><orcidid>https://orcid.org/0000-0002-3453-0849</orcidid><orcidid>https://orcid.org/0000-0002-8810-6971</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2022-03, Vol.603 (7902), p.728-735 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9908437 |
source | Springer Nature - Connect here FIRST to enable access |
subjects | 38 38/91 42/44 631/250/1619/554 631/250/248 631/61/191 631/67/580 96 96/106 96/31 Antigens CD19 antigen CD28 antigen CD3 antigen CD4 antigen CD4-Positive T-Lymphocytes CD8 antigen CD8-Positive T-Lymphocytes Cell cycle Cell growth Cell Proliferation CRISPR Cytokines Cytotoxicity Gene expression Genomes Genomics Humanities and Social Sciences Humans Immunotherapy, Adoptive Interleukin 1 Interleukin 2 Lymphocyte Activation - genetics Lymphocytes Lymphocytes T multidisciplinary Neoplasms Science Science (multidisciplinary) T cell receptors Toxicity Tumors |
title | A genome-scale screen for synthetic drivers of T cell proliferation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A58%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20genome-scale%20screen%20for%20synthetic%20drivers%20of%20T%20cell%20proliferation&rft.jtitle=Nature%20(London)&rft.au=Legut,%20Mateusz&rft.date=2022-03-24&rft.volume=603&rft.issue=7902&rft.spage=728&rft.epage=735&rft.pages=728-735&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-022-04494-7&rft_dat=%3Cproquest_pubme%3E2643282896%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-a5319254b15ca733a5d32ceaad22fdbc4764cc77a0fd9238d3b183a7e0fccd763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2643282896&rft_id=info:pmid/35296855&rfr_iscdi=true |