Loading…

A genome-scale screen for synthetic drivers of T cell proliferation

The engineering of autologous patient T cells for adoptive cell therapies has revolutionized the treatment of several types of cancer 1 . However, further improvements are needed to increase response and cure rates. CRISPR-based loss-of-function screens have been limited to negative regulators of T...

Full description

Saved in:
Bibliographic Details
Published in:Nature (London) 2022-03, Vol.603 (7902), p.728-735
Main Authors: Legut, Mateusz, Gajic, Zoran, Guarino, Maria, Daniloski, Zharko, Rahman, Jahan A., Xue, Xinhe, Lu, Congyi, Lu, Lu, Mimitou, Eleni P., Hao, Stephanie, Davoli, Teresa, Diefenbach, Catherine, Smibert, Peter, Sanjana, Neville E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c474t-a5319254b15ca733a5d32ceaad22fdbc4764cc77a0fd9238d3b183a7e0fccd763
cites cdi_FETCH-LOGICAL-c474t-a5319254b15ca733a5d32ceaad22fdbc4764cc77a0fd9238d3b183a7e0fccd763
container_end_page 735
container_issue 7902
container_start_page 728
container_title Nature (London)
container_volume 603
creator Legut, Mateusz
Gajic, Zoran
Guarino, Maria
Daniloski, Zharko
Rahman, Jahan A.
Xue, Xinhe
Lu, Congyi
Lu, Lu
Mimitou, Eleni P.
Hao, Stephanie
Davoli, Teresa
Diefenbach, Catherine
Smibert, Peter
Sanjana, Neville E.
description The engineering of autologous patient T cells for adoptive cell therapies has revolutionized the treatment of several types of cancer 1 . However, further improvements are needed to increase response and cure rates. CRISPR-based loss-of-function screens have been limited to negative regulators of T cell functions 2 – 4 and raise safety concerns owing to the permanent modification of the genome. Here we identify positive regulators of T cell functions through overexpression of around 12,000 barcoded human open reading frames (ORFs). The top-ranked genes increased the proliferation and activation of primary human CD4 + and CD8 + T cells and their secretion of key cytokines such as interleukin-2 and interferon-γ. In addition, we developed the single-cell genomics method OverCITE-seq for high-throughput quantification of the transcriptome and surface antigens in ORF-engineered T cells. The top-ranked ORF—lymphotoxin-β receptor (LTBR)—is typically expressed in myeloid cells but absent in lymphocytes. When overexpressed in T cells, LTBR induced profound transcriptional and epigenomic remodelling, leading to increased T cell effector functions and resistance to exhaustion in chronic stimulation settings through constitutive activation of the canonical NF-κB pathway. LTBR and other highly ranked genes improved the antigen-specific responses of chimeric antigen receptor T cells and γδ T cells, highlighting their potential for future cancer-agnostic therapies 5 . Our results provide several strategies for improving next-generation T cell therapies by the induction of synthetic cell programmes. A genome-scale gain-of-function screen using overexpression of nearly 12,000 open reading frames (ORFs) identifies positive regulators of human T cell function and suggests that ORF-based screens could be applied clinically to improve T cell therapies.
doi_str_mv 10.1038/s41586-022-04494-7
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9908437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2643282896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-a5319254b15ca733a5d32ceaad22fdbc4764cc77a0fd9238d3b183a7e0fccd763</originalsourceid><addsrcrecordid>eNp9kUtLAzEUhYMoWh9_wIUE3LiJ5jnJbAQpvkBwU9chzdypI9OkJlOh_94Zq_WxcHUX97vnnsNB6JjRc0aFuciSKVMQyjmhUpaS6C00YlIXRBZGb6MRpdwQakSxh_ZzfqGUKqblLtoTipeFUWqExld4BiHOgWTvWsDZJ4CA65hwXoXuGbrG4yo1b5AyjjWeYA9tixcptk0NyXVNDIdop3ZthqPPeYCebq4n4zvy8Hh7P756IF5q2RGnBCu5klOmvNNCOFUJ7sG5ivO6mvZQIb3X2tG6KrkwlZgyI5wGWntf6UIcoMu17mI5nUPlIXTJtXaRmrlLKxtdY39vQvNsZ_HNliU1Uuhe4OxTIMXXJeTOzps85HEB4jJbXkgqBO3JHj39g77EZQp9vIES3HBTDo74mvIp5pyg3phh1A4d2XVHtu_IfnRkBxcnP2NsTr5K6QGxBnK_CjNI37__kX0HdvWdYw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2643282896</pqid></control><display><type>article</type><title>A genome-scale screen for synthetic drivers of T cell proliferation</title><source>Springer Nature - Connect here FIRST to enable access</source><creator>Legut, Mateusz ; Gajic, Zoran ; Guarino, Maria ; Daniloski, Zharko ; Rahman, Jahan A. ; Xue, Xinhe ; Lu, Congyi ; Lu, Lu ; Mimitou, Eleni P. ; Hao, Stephanie ; Davoli, Teresa ; Diefenbach, Catherine ; Smibert, Peter ; Sanjana, Neville E.</creator><creatorcontrib>Legut, Mateusz ; Gajic, Zoran ; Guarino, Maria ; Daniloski, Zharko ; Rahman, Jahan A. ; Xue, Xinhe ; Lu, Congyi ; Lu, Lu ; Mimitou, Eleni P. ; Hao, Stephanie ; Davoli, Teresa ; Diefenbach, Catherine ; Smibert, Peter ; Sanjana, Neville E.</creatorcontrib><description>The engineering of autologous patient T cells for adoptive cell therapies has revolutionized the treatment of several types of cancer 1 . However, further improvements are needed to increase response and cure rates. CRISPR-based loss-of-function screens have been limited to negative regulators of T cell functions 2 – 4 and raise safety concerns owing to the permanent modification of the genome. Here we identify positive regulators of T cell functions through overexpression of around 12,000 barcoded human open reading frames (ORFs). The top-ranked genes increased the proliferation and activation of primary human CD4 + and CD8 + T cells and their secretion of key cytokines such as interleukin-2 and interferon-γ. In addition, we developed the single-cell genomics method OverCITE-seq for high-throughput quantification of the transcriptome and surface antigens in ORF-engineered T cells. The top-ranked ORF—lymphotoxin-β receptor (LTBR)—is typically expressed in myeloid cells but absent in lymphocytes. When overexpressed in T cells, LTBR induced profound transcriptional and epigenomic remodelling, leading to increased T cell effector functions and resistance to exhaustion in chronic stimulation settings through constitutive activation of the canonical NF-κB pathway. LTBR and other highly ranked genes improved the antigen-specific responses of chimeric antigen receptor T cells and γδ T cells, highlighting their potential for future cancer-agnostic therapies 5 . Our results provide several strategies for improving next-generation T cell therapies by the induction of synthetic cell programmes. A genome-scale gain-of-function screen using overexpression of nearly 12,000 open reading frames (ORFs) identifies positive regulators of human T cell function and suggests that ORF-based screens could be applied clinically to improve T cell therapies.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-022-04494-7</identifier><identifier>PMID: 35296855</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>38 ; 38/91 ; 42/44 ; 631/250/1619/554 ; 631/250/248 ; 631/61/191 ; 631/67/580 ; 96 ; 96/106 ; 96/31 ; Antigens ; CD19 antigen ; CD28 antigen ; CD3 antigen ; CD4 antigen ; CD4-Positive T-Lymphocytes ; CD8 antigen ; CD8-Positive T-Lymphocytes ; Cell cycle ; Cell growth ; Cell Proliferation ; CRISPR ; Cytokines ; Cytotoxicity ; Gene expression ; Genomes ; Genomics ; Humanities and Social Sciences ; Humans ; Immunotherapy, Adoptive ; Interleukin 1 ; Interleukin 2 ; Lymphocyte Activation - genetics ; Lymphocytes ; Lymphocytes T ; multidisciplinary ; Neoplasms ; Science ; Science (multidisciplinary) ; T cell receptors ; Toxicity ; Tumors</subject><ispartof>Nature (London), 2022-03, Vol.603 (7902), p.728-735</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022</rights><rights>2022. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>Copyright Nature Publishing Group Mar 24, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-a5319254b15ca733a5d32ceaad22fdbc4764cc77a0fd9238d3b183a7e0fccd763</citedby><cites>FETCH-LOGICAL-c474t-a5319254b15ca733a5d32ceaad22fdbc4764cc77a0fd9238d3b183a7e0fccd763</cites><orcidid>0000-0001-9737-6394 ; 0000-0003-0772-1647 ; 0000-0002-1504-0027 ; 0000-0002-8672-3757 ; 0000-0001-8755-5890 ; 0000-0002-1700-9699 ; 0000-0002-7343-7161 ; 0000-0002-3453-0849 ; 0000-0002-8810-6971</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35296855$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Legut, Mateusz</creatorcontrib><creatorcontrib>Gajic, Zoran</creatorcontrib><creatorcontrib>Guarino, Maria</creatorcontrib><creatorcontrib>Daniloski, Zharko</creatorcontrib><creatorcontrib>Rahman, Jahan A.</creatorcontrib><creatorcontrib>Xue, Xinhe</creatorcontrib><creatorcontrib>Lu, Congyi</creatorcontrib><creatorcontrib>Lu, Lu</creatorcontrib><creatorcontrib>Mimitou, Eleni P.</creatorcontrib><creatorcontrib>Hao, Stephanie</creatorcontrib><creatorcontrib>Davoli, Teresa</creatorcontrib><creatorcontrib>Diefenbach, Catherine</creatorcontrib><creatorcontrib>Smibert, Peter</creatorcontrib><creatorcontrib>Sanjana, Neville E.</creatorcontrib><title>A genome-scale screen for synthetic drivers of T cell proliferation</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>The engineering of autologous patient T cells for adoptive cell therapies has revolutionized the treatment of several types of cancer 1 . However, further improvements are needed to increase response and cure rates. CRISPR-based loss-of-function screens have been limited to negative regulators of T cell functions 2 – 4 and raise safety concerns owing to the permanent modification of the genome. Here we identify positive regulators of T cell functions through overexpression of around 12,000 barcoded human open reading frames (ORFs). The top-ranked genes increased the proliferation and activation of primary human CD4 + and CD8 + T cells and their secretion of key cytokines such as interleukin-2 and interferon-γ. In addition, we developed the single-cell genomics method OverCITE-seq for high-throughput quantification of the transcriptome and surface antigens in ORF-engineered T cells. The top-ranked ORF—lymphotoxin-β receptor (LTBR)—is typically expressed in myeloid cells but absent in lymphocytes. When overexpressed in T cells, LTBR induced profound transcriptional and epigenomic remodelling, leading to increased T cell effector functions and resistance to exhaustion in chronic stimulation settings through constitutive activation of the canonical NF-κB pathway. LTBR and other highly ranked genes improved the antigen-specific responses of chimeric antigen receptor T cells and γδ T cells, highlighting their potential for future cancer-agnostic therapies 5 . Our results provide several strategies for improving next-generation T cell therapies by the induction of synthetic cell programmes. A genome-scale gain-of-function screen using overexpression of nearly 12,000 open reading frames (ORFs) identifies positive regulators of human T cell function and suggests that ORF-based screens could be applied clinically to improve T cell therapies.</description><subject>38</subject><subject>38/91</subject><subject>42/44</subject><subject>631/250/1619/554</subject><subject>631/250/248</subject><subject>631/61/191</subject><subject>631/67/580</subject><subject>96</subject><subject>96/106</subject><subject>96/31</subject><subject>Antigens</subject><subject>CD19 antigen</subject><subject>CD28 antigen</subject><subject>CD3 antigen</subject><subject>CD4 antigen</subject><subject>CD4-Positive T-Lymphocytes</subject><subject>CD8 antigen</subject><subject>CD8-Positive T-Lymphocytes</subject><subject>Cell cycle</subject><subject>Cell growth</subject><subject>Cell Proliferation</subject><subject>CRISPR</subject><subject>Cytokines</subject><subject>Cytotoxicity</subject><subject>Gene expression</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Immunotherapy, Adoptive</subject><subject>Interleukin 1</subject><subject>Interleukin 2</subject><subject>Lymphocyte Activation - genetics</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>multidisciplinary</subject><subject>Neoplasms</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>T cell receptors</subject><subject>Toxicity</subject><subject>Tumors</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kUtLAzEUhYMoWh9_wIUE3LiJ5jnJbAQpvkBwU9chzdypI9OkJlOh_94Zq_WxcHUX97vnnsNB6JjRc0aFuciSKVMQyjmhUpaS6C00YlIXRBZGb6MRpdwQakSxh_ZzfqGUKqblLtoTipeFUWqExld4BiHOgWTvWsDZJ4CA65hwXoXuGbrG4yo1b5AyjjWeYA9tixcptk0NyXVNDIdop3ZthqPPeYCebq4n4zvy8Hh7P756IF5q2RGnBCu5klOmvNNCOFUJ7sG5ivO6mvZQIb3X2tG6KrkwlZgyI5wGWntf6UIcoMu17mI5nUPlIXTJtXaRmrlLKxtdY39vQvNsZ_HNliU1Uuhe4OxTIMXXJeTOzps85HEB4jJbXkgqBO3JHj39g77EZQp9vIES3HBTDo74mvIp5pyg3phh1A4d2XVHtu_IfnRkBxcnP2NsTr5K6QGxBnK_CjNI37__kX0HdvWdYw</recordid><startdate>20220324</startdate><enddate>20220324</enddate><creator>Legut, Mateusz</creator><creator>Gajic, Zoran</creator><creator>Guarino, Maria</creator><creator>Daniloski, Zharko</creator><creator>Rahman, Jahan A.</creator><creator>Xue, Xinhe</creator><creator>Lu, Congyi</creator><creator>Lu, Lu</creator><creator>Mimitou, Eleni P.</creator><creator>Hao, Stephanie</creator><creator>Davoli, Teresa</creator><creator>Diefenbach, Catherine</creator><creator>Smibert, Peter</creator><creator>Sanjana, Neville E.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9737-6394</orcidid><orcidid>https://orcid.org/0000-0003-0772-1647</orcidid><orcidid>https://orcid.org/0000-0002-1504-0027</orcidid><orcidid>https://orcid.org/0000-0002-8672-3757</orcidid><orcidid>https://orcid.org/0000-0001-8755-5890</orcidid><orcidid>https://orcid.org/0000-0002-1700-9699</orcidid><orcidid>https://orcid.org/0000-0002-7343-7161</orcidid><orcidid>https://orcid.org/0000-0002-3453-0849</orcidid><orcidid>https://orcid.org/0000-0002-8810-6971</orcidid></search><sort><creationdate>20220324</creationdate><title>A genome-scale screen for synthetic drivers of T cell proliferation</title><author>Legut, Mateusz ; Gajic, Zoran ; Guarino, Maria ; Daniloski, Zharko ; Rahman, Jahan A. ; Xue, Xinhe ; Lu, Congyi ; Lu, Lu ; Mimitou, Eleni P. ; Hao, Stephanie ; Davoli, Teresa ; Diefenbach, Catherine ; Smibert, Peter ; Sanjana, Neville E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-a5319254b15ca733a5d32ceaad22fdbc4764cc77a0fd9238d3b183a7e0fccd763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>38</topic><topic>38/91</topic><topic>42/44</topic><topic>631/250/1619/554</topic><topic>631/250/248</topic><topic>631/61/191</topic><topic>631/67/580</topic><topic>96</topic><topic>96/106</topic><topic>96/31</topic><topic>Antigens</topic><topic>CD19 antigen</topic><topic>CD28 antigen</topic><topic>CD3 antigen</topic><topic>CD4 antigen</topic><topic>CD4-Positive T-Lymphocytes</topic><topic>CD8 antigen</topic><topic>CD8-Positive T-Lymphocytes</topic><topic>Cell cycle</topic><topic>Cell growth</topic><topic>Cell Proliferation</topic><topic>CRISPR</topic><topic>Cytokines</topic><topic>Cytotoxicity</topic><topic>Gene expression</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Immunotherapy, Adoptive</topic><topic>Interleukin 1</topic><topic>Interleukin 2</topic><topic>Lymphocyte Activation - genetics</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>multidisciplinary</topic><topic>Neoplasms</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>T cell receptors</topic><topic>Toxicity</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Legut, Mateusz</creatorcontrib><creatorcontrib>Gajic, Zoran</creatorcontrib><creatorcontrib>Guarino, Maria</creatorcontrib><creatorcontrib>Daniloski, Zharko</creatorcontrib><creatorcontrib>Rahman, Jahan A.</creatorcontrib><creatorcontrib>Xue, Xinhe</creatorcontrib><creatorcontrib>Lu, Congyi</creatorcontrib><creatorcontrib>Lu, Lu</creatorcontrib><creatorcontrib>Mimitou, Eleni P.</creatorcontrib><creatorcontrib>Hao, Stephanie</creatorcontrib><creatorcontrib>Davoli, Teresa</creatorcontrib><creatorcontrib>Diefenbach, Catherine</creatorcontrib><creatorcontrib>Smibert, Peter</creatorcontrib><creatorcontrib>Sanjana, Neville E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Legut, Mateusz</au><au>Gajic, Zoran</au><au>Guarino, Maria</au><au>Daniloski, Zharko</au><au>Rahman, Jahan A.</au><au>Xue, Xinhe</au><au>Lu, Congyi</au><au>Lu, Lu</au><au>Mimitou, Eleni P.</au><au>Hao, Stephanie</au><au>Davoli, Teresa</au><au>Diefenbach, Catherine</au><au>Smibert, Peter</au><au>Sanjana, Neville E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A genome-scale screen for synthetic drivers of T cell proliferation</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2022-03-24</date><risdate>2022</risdate><volume>603</volume><issue>7902</issue><spage>728</spage><epage>735</epage><pages>728-735</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>The engineering of autologous patient T cells for adoptive cell therapies has revolutionized the treatment of several types of cancer 1 . However, further improvements are needed to increase response and cure rates. CRISPR-based loss-of-function screens have been limited to negative regulators of T cell functions 2 – 4 and raise safety concerns owing to the permanent modification of the genome. Here we identify positive regulators of T cell functions through overexpression of around 12,000 barcoded human open reading frames (ORFs). The top-ranked genes increased the proliferation and activation of primary human CD4 + and CD8 + T cells and their secretion of key cytokines such as interleukin-2 and interferon-γ. In addition, we developed the single-cell genomics method OverCITE-seq for high-throughput quantification of the transcriptome and surface antigens in ORF-engineered T cells. The top-ranked ORF—lymphotoxin-β receptor (LTBR)—is typically expressed in myeloid cells but absent in lymphocytes. When overexpressed in T cells, LTBR induced profound transcriptional and epigenomic remodelling, leading to increased T cell effector functions and resistance to exhaustion in chronic stimulation settings through constitutive activation of the canonical NF-κB pathway. LTBR and other highly ranked genes improved the antigen-specific responses of chimeric antigen receptor T cells and γδ T cells, highlighting their potential for future cancer-agnostic therapies 5 . Our results provide several strategies for improving next-generation T cell therapies by the induction of synthetic cell programmes. A genome-scale gain-of-function screen using overexpression of nearly 12,000 open reading frames (ORFs) identifies positive regulators of human T cell function and suggests that ORF-based screens could be applied clinically to improve T cell therapies.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35296855</pmid><doi>10.1038/s41586-022-04494-7</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9737-6394</orcidid><orcidid>https://orcid.org/0000-0003-0772-1647</orcidid><orcidid>https://orcid.org/0000-0002-1504-0027</orcidid><orcidid>https://orcid.org/0000-0002-8672-3757</orcidid><orcidid>https://orcid.org/0000-0001-8755-5890</orcidid><orcidid>https://orcid.org/0000-0002-1700-9699</orcidid><orcidid>https://orcid.org/0000-0002-7343-7161</orcidid><orcidid>https://orcid.org/0000-0002-3453-0849</orcidid><orcidid>https://orcid.org/0000-0002-8810-6971</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2022-03, Vol.603 (7902), p.728-735
issn 0028-0836
1476-4687
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9908437
source Springer Nature - Connect here FIRST to enable access
subjects 38
38/91
42/44
631/250/1619/554
631/250/248
631/61/191
631/67/580
96
96/106
96/31
Antigens
CD19 antigen
CD28 antigen
CD3 antigen
CD4 antigen
CD4-Positive T-Lymphocytes
CD8 antigen
CD8-Positive T-Lymphocytes
Cell cycle
Cell growth
Cell Proliferation
CRISPR
Cytokines
Cytotoxicity
Gene expression
Genomes
Genomics
Humanities and Social Sciences
Humans
Immunotherapy, Adoptive
Interleukin 1
Interleukin 2
Lymphocyte Activation - genetics
Lymphocytes
Lymphocytes T
multidisciplinary
Neoplasms
Science
Science (multidisciplinary)
T cell receptors
Toxicity
Tumors
title A genome-scale screen for synthetic drivers of T cell proliferation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A58%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20genome-scale%20screen%20for%20synthetic%20drivers%20of%20T%20cell%20proliferation&rft.jtitle=Nature%20(London)&rft.au=Legut,%20Mateusz&rft.date=2022-03-24&rft.volume=603&rft.issue=7902&rft.spage=728&rft.epage=735&rft.pages=728-735&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-022-04494-7&rft_dat=%3Cproquest_pubme%3E2643282896%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-a5319254b15ca733a5d32ceaad22fdbc4764cc77a0fd9238d3b183a7e0fccd763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2643282896&rft_id=info:pmid/35296855&rfr_iscdi=true