Loading…

Plasma nanoDSF Denaturation Profile at Baseline Is Predictive of Glioblastoma EGFR Status

Glioblastoma (GBM) is the most frequent and aggressive primary brain tumor in adults. Recently, we demonstrated that plasma denaturation profiles of glioblastoma patients obtained using Differential Scanning Fluorimetry can be automatically distinguished from healthy controls with the help of Artifi...

Full description

Saved in:
Bibliographic Details
Published in:Cancers 2023-01, Vol.15 (3), p.760
Main Authors: Eyraud, Rémi, Ayache, Stéphane, Tsvetkov, Philipp O, Kalidindi, Shanmugha Sri, Baksheeva, Viktoriia E, Boissonneau, Sébastien, Jiguet-Jiglaire, Carine, Appay, Romain, Nanni-Metellus, Isabelle, Chinot, Olivier, Devred, François, Tabouret, Emeline
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c522t-6283e36dde37d2048092bde5e4c23e18c836810565f28f5b51e107062583855c3
cites cdi_FETCH-LOGICAL-c522t-6283e36dde37d2048092bde5e4c23e18c836810565f28f5b51e107062583855c3
container_end_page
container_issue 3
container_start_page 760
container_title Cancers
container_volume 15
creator Eyraud, Rémi
Ayache, Stéphane
Tsvetkov, Philipp O
Kalidindi, Shanmugha Sri
Baksheeva, Viktoriia E
Boissonneau, Sébastien
Jiguet-Jiglaire, Carine
Appay, Romain
Nanni-Metellus, Isabelle
Chinot, Olivier
Devred, François
Tabouret, Emeline
description Glioblastoma (GBM) is the most frequent and aggressive primary brain tumor in adults. Recently, we demonstrated that plasma denaturation profiles of glioblastoma patients obtained using Differential Scanning Fluorimetry can be automatically distinguished from healthy controls with the help of Artificial Intelligence (AI). Here, we used a set of machine-learning algorithms to automatically classify plasma denaturation profiles of glioblastoma patients according to their EGFR status. We found that Adaboost AI is able to discriminate alterations in GBM with an 81.5% accuracy. Our study shows that the use of these plasma denaturation profiles could answer the unmet neuro-oncology need for diagnostic predictive biomarker in combination with brain MRI and clinical data, in order to allow for a rapid orientation of patients for a definitive pathological diagnosis and then treatment. We complete this study by showing that discriminating another mutation, MGMT, seems harder, and that post-surgery monitoring using our approach is not conclusive in the 48 h that follow the surgery.
doi_str_mv 10.3390/cancers15030760
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9913157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743009931</galeid><sourcerecordid>A743009931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-6283e36dde37d2048092bde5e4c23e18c836810565f28f5b51e107062583855c3</originalsourceid><addsrcrecordid>eNptkk1r3DAQhk1paEKSc2_F0Et72ETSWB--FLZJdhNYaGjaQ09CK48TBVtKJXuh_74ym4bNUukgMXrfZ6TRFMV7Ss4AanJujbcYE-UEiBTkTXHEiGQzIerq7c7-sDhN6ZHkAUClkO-KQxBScEnVUfHrtjOpN6U3PlzeLcpL9GYYoxlc8OVtDK3rsDRD-dUk7JzH8iblMDbODm6DZWjLZefCOkOGkDFXy8X38m7IiHRSHLSmS3j6vB4XPxdXPy6uZ6tvy5uL-WpmOWPDTDAFCKJpEGTDSKVIzdYNcqwsA6TKKhCKEi54y1TL15wiJZIIxhUozi0cF1-23Kdx3WNj0Q_RdPoput7EPzoYp1-fePeg78NG1zUFymUGfN4CHvZs1_OVnmIEai65gA3N2k_PyWL4PWIadO-Sxa4zHsOYNJNZyKSiE_bjnvQxjNHnUkyqSskK1I7q3nSonW9DvqOdoHqeFYTUNUxpz_6jyrPB3tngcfqm14bzrcHGkFLE9uVhlOipefRe82THh90yvuj_tQr8BVU-vPc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774874387</pqid></control><display><type>article</type><title>Plasma nanoDSF Denaturation Profile at Baseline Is Predictive of Glioblastoma EGFR Status</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Eyraud, Rémi ; Ayache, Stéphane ; Tsvetkov, Philipp O ; Kalidindi, Shanmugha Sri ; Baksheeva, Viktoriia E ; Boissonneau, Sébastien ; Jiguet-Jiglaire, Carine ; Appay, Romain ; Nanni-Metellus, Isabelle ; Chinot, Olivier ; Devred, François ; Tabouret, Emeline</creator><creatorcontrib>Eyraud, Rémi ; Ayache, Stéphane ; Tsvetkov, Philipp O ; Kalidindi, Shanmugha Sri ; Baksheeva, Viktoriia E ; Boissonneau, Sébastien ; Jiguet-Jiglaire, Carine ; Appay, Romain ; Nanni-Metellus, Isabelle ; Chinot, Olivier ; Devred, François ; Tabouret, Emeline</creatorcontrib><description>Glioblastoma (GBM) is the most frequent and aggressive primary brain tumor in adults. Recently, we demonstrated that plasma denaturation profiles of glioblastoma patients obtained using Differential Scanning Fluorimetry can be automatically distinguished from healthy controls with the help of Artificial Intelligence (AI). Here, we used a set of machine-learning algorithms to automatically classify plasma denaturation profiles of glioblastoma patients according to their EGFR status. We found that Adaboost AI is able to discriminate alterations in GBM with an 81.5% accuracy. Our study shows that the use of these plasma denaturation profiles could answer the unmet neuro-oncology need for diagnostic predictive biomarker in combination with brain MRI and clinical data, in order to allow for a rapid orientation of patients for a definitive pathological diagnosis and then treatment. We complete this study by showing that discriminating another mutation, MGMT, seems harder, and that post-surgery monitoring using our approach is not conclusive in the 48 h that follow the surgery.</description><identifier>ISSN: 2072-6694</identifier><identifier>EISSN: 2072-6694</identifier><identifier>DOI: 10.3390/cancers15030760</identifier><identifier>PMID: 36765718</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Aneurysms ; Artificial intelligence ; Biochemistry, Molecular Biology ; Biomarkers ; Biophysics ; Brain cancer ; Brain tumors ; Cancer ; Care and treatment ; Chemotherapy ; Denaturation ; Diagnosis ; DNA methylation ; Epidermal growth factor receptors ; Fluorimetry ; Genetic aspects ; Glioblastoma ; Glioblastoma multiforme ; Life Sciences ; Lung cancer ; Magnetic resonance imaging ; Medical prognosis ; Neurobiology ; Neurons and Cognition ; Oncology ; Open source software ; Patients ; Plasma ; Support vector machines ; Surgery</subject><ispartof>Cancers, 2023-01, Vol.15 (3), p.760</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-6283e36dde37d2048092bde5e4c23e18c836810565f28f5b51e107062583855c3</citedby><cites>FETCH-LOGICAL-c522t-6283e36dde37d2048092bde5e4c23e18c836810565f28f5b51e107062583855c3</cites><orcidid>0000-0002-5728-4759 ; 0000-0003-4545-6063 ; 0000-0001-5990-8898 ; 0000-0002-4031-2178 ; 0000-0002-8622-8836 ; 0000-0003-2982-7127</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2774874387/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2774874387?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36765718$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://amu.hal.science/hal-03957563$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Eyraud, Rémi</creatorcontrib><creatorcontrib>Ayache, Stéphane</creatorcontrib><creatorcontrib>Tsvetkov, Philipp O</creatorcontrib><creatorcontrib>Kalidindi, Shanmugha Sri</creatorcontrib><creatorcontrib>Baksheeva, Viktoriia E</creatorcontrib><creatorcontrib>Boissonneau, Sébastien</creatorcontrib><creatorcontrib>Jiguet-Jiglaire, Carine</creatorcontrib><creatorcontrib>Appay, Romain</creatorcontrib><creatorcontrib>Nanni-Metellus, Isabelle</creatorcontrib><creatorcontrib>Chinot, Olivier</creatorcontrib><creatorcontrib>Devred, François</creatorcontrib><creatorcontrib>Tabouret, Emeline</creatorcontrib><title>Plasma nanoDSF Denaturation Profile at Baseline Is Predictive of Glioblastoma EGFR Status</title><title>Cancers</title><addtitle>Cancers (Basel)</addtitle><description>Glioblastoma (GBM) is the most frequent and aggressive primary brain tumor in adults. Recently, we demonstrated that plasma denaturation profiles of glioblastoma patients obtained using Differential Scanning Fluorimetry can be automatically distinguished from healthy controls with the help of Artificial Intelligence (AI). Here, we used a set of machine-learning algorithms to automatically classify plasma denaturation profiles of glioblastoma patients according to their EGFR status. We found that Adaboost AI is able to discriminate alterations in GBM with an 81.5% accuracy. Our study shows that the use of these plasma denaturation profiles could answer the unmet neuro-oncology need for diagnostic predictive biomarker in combination with brain MRI and clinical data, in order to allow for a rapid orientation of patients for a definitive pathological diagnosis and then treatment. We complete this study by showing that discriminating another mutation, MGMT, seems harder, and that post-surgery monitoring using our approach is not conclusive in the 48 h that follow the surgery.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Aneurysms</subject><subject>Artificial intelligence</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biomarkers</subject><subject>Biophysics</subject><subject>Brain cancer</subject><subject>Brain tumors</subject><subject>Cancer</subject><subject>Care and treatment</subject><subject>Chemotherapy</subject><subject>Denaturation</subject><subject>Diagnosis</subject><subject>DNA methylation</subject><subject>Epidermal growth factor receptors</subject><subject>Fluorimetry</subject><subject>Genetic aspects</subject><subject>Glioblastoma</subject><subject>Glioblastoma multiforme</subject><subject>Life Sciences</subject><subject>Lung cancer</subject><subject>Magnetic resonance imaging</subject><subject>Medical prognosis</subject><subject>Neurobiology</subject><subject>Neurons and Cognition</subject><subject>Oncology</subject><subject>Open source software</subject><subject>Patients</subject><subject>Plasma</subject><subject>Support vector machines</subject><subject>Surgery</subject><issn>2072-6694</issn><issn>2072-6694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptkk1r3DAQhk1paEKSc2_F0Et72ETSWB--FLZJdhNYaGjaQ09CK48TBVtKJXuh_74ym4bNUukgMXrfZ6TRFMV7Ss4AanJujbcYE-UEiBTkTXHEiGQzIerq7c7-sDhN6ZHkAUClkO-KQxBScEnVUfHrtjOpN6U3PlzeLcpL9GYYoxlc8OVtDK3rsDRD-dUk7JzH8iblMDbODm6DZWjLZefCOkOGkDFXy8X38m7IiHRSHLSmS3j6vB4XPxdXPy6uZ6tvy5uL-WpmOWPDTDAFCKJpEGTDSKVIzdYNcqwsA6TKKhCKEi54y1TL15wiJZIIxhUozi0cF1-23Kdx3WNj0Q_RdPoput7EPzoYp1-fePeg78NG1zUFymUGfN4CHvZs1_OVnmIEai65gA3N2k_PyWL4PWIadO-Sxa4zHsOYNJNZyKSiE_bjnvQxjNHnUkyqSskK1I7q3nSonW9DvqOdoHqeFYTUNUxpz_6jyrPB3tngcfqm14bzrcHGkFLE9uVhlOipefRe82THh90yvuj_tQr8BVU-vPc</recordid><startdate>20230126</startdate><enddate>20230126</enddate><creator>Eyraud, Rémi</creator><creator>Ayache, Stéphane</creator><creator>Tsvetkov, Philipp O</creator><creator>Kalidindi, Shanmugha Sri</creator><creator>Baksheeva, Viktoriia E</creator><creator>Boissonneau, Sébastien</creator><creator>Jiguet-Jiglaire, Carine</creator><creator>Appay, Romain</creator><creator>Nanni-Metellus, Isabelle</creator><creator>Chinot, Olivier</creator><creator>Devred, François</creator><creator>Tabouret, Emeline</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7TO</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5728-4759</orcidid><orcidid>https://orcid.org/0000-0003-4545-6063</orcidid><orcidid>https://orcid.org/0000-0001-5990-8898</orcidid><orcidid>https://orcid.org/0000-0002-4031-2178</orcidid><orcidid>https://orcid.org/0000-0002-8622-8836</orcidid><orcidid>https://orcid.org/0000-0003-2982-7127</orcidid></search><sort><creationdate>20230126</creationdate><title>Plasma nanoDSF Denaturation Profile at Baseline Is Predictive of Glioblastoma EGFR Status</title><author>Eyraud, Rémi ; Ayache, Stéphane ; Tsvetkov, Philipp O ; Kalidindi, Shanmugha Sri ; Baksheeva, Viktoriia E ; Boissonneau, Sébastien ; Jiguet-Jiglaire, Carine ; Appay, Romain ; Nanni-Metellus, Isabelle ; Chinot, Olivier ; Devred, François ; Tabouret, Emeline</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-6283e36dde37d2048092bde5e4c23e18c836810565f28f5b51e107062583855c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Aneurysms</topic><topic>Artificial intelligence</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biomarkers</topic><topic>Biophysics</topic><topic>Brain cancer</topic><topic>Brain tumors</topic><topic>Cancer</topic><topic>Care and treatment</topic><topic>Chemotherapy</topic><topic>Denaturation</topic><topic>Diagnosis</topic><topic>DNA methylation</topic><topic>Epidermal growth factor receptors</topic><topic>Fluorimetry</topic><topic>Genetic aspects</topic><topic>Glioblastoma</topic><topic>Glioblastoma multiforme</topic><topic>Life Sciences</topic><topic>Lung cancer</topic><topic>Magnetic resonance imaging</topic><topic>Medical prognosis</topic><topic>Neurobiology</topic><topic>Neurons and Cognition</topic><topic>Oncology</topic><topic>Open source software</topic><topic>Patients</topic><topic>Plasma</topic><topic>Support vector machines</topic><topic>Surgery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eyraud, Rémi</creatorcontrib><creatorcontrib>Ayache, Stéphane</creatorcontrib><creatorcontrib>Tsvetkov, Philipp O</creatorcontrib><creatorcontrib>Kalidindi, Shanmugha Sri</creatorcontrib><creatorcontrib>Baksheeva, Viktoriia E</creatorcontrib><creatorcontrib>Boissonneau, Sébastien</creatorcontrib><creatorcontrib>Jiguet-Jiglaire, Carine</creatorcontrib><creatorcontrib>Appay, Romain</creatorcontrib><creatorcontrib>Nanni-Metellus, Isabelle</creatorcontrib><creatorcontrib>Chinot, Olivier</creatorcontrib><creatorcontrib>Devred, François</creatorcontrib><creatorcontrib>Tabouret, Emeline</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>Biological Sciences</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eyraud, Rémi</au><au>Ayache, Stéphane</au><au>Tsvetkov, Philipp O</au><au>Kalidindi, Shanmugha Sri</au><au>Baksheeva, Viktoriia E</au><au>Boissonneau, Sébastien</au><au>Jiguet-Jiglaire, Carine</au><au>Appay, Romain</au><au>Nanni-Metellus, Isabelle</au><au>Chinot, Olivier</au><au>Devred, François</au><au>Tabouret, Emeline</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasma nanoDSF Denaturation Profile at Baseline Is Predictive of Glioblastoma EGFR Status</atitle><jtitle>Cancers</jtitle><addtitle>Cancers (Basel)</addtitle><date>2023-01-26</date><risdate>2023</risdate><volume>15</volume><issue>3</issue><spage>760</spage><pages>760-</pages><issn>2072-6694</issn><eissn>2072-6694</eissn><abstract>Glioblastoma (GBM) is the most frequent and aggressive primary brain tumor in adults. Recently, we demonstrated that plasma denaturation profiles of glioblastoma patients obtained using Differential Scanning Fluorimetry can be automatically distinguished from healthy controls with the help of Artificial Intelligence (AI). Here, we used a set of machine-learning algorithms to automatically classify plasma denaturation profiles of glioblastoma patients according to their EGFR status. We found that Adaboost AI is able to discriminate alterations in GBM with an 81.5% accuracy. Our study shows that the use of these plasma denaturation profiles could answer the unmet neuro-oncology need for diagnostic predictive biomarker in combination with brain MRI and clinical data, in order to allow for a rapid orientation of patients for a definitive pathological diagnosis and then treatment. We complete this study by showing that discriminating another mutation, MGMT, seems harder, and that post-surgery monitoring using our approach is not conclusive in the 48 h that follow the surgery.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36765718</pmid><doi>10.3390/cancers15030760</doi><orcidid>https://orcid.org/0000-0002-5728-4759</orcidid><orcidid>https://orcid.org/0000-0003-4545-6063</orcidid><orcidid>https://orcid.org/0000-0001-5990-8898</orcidid><orcidid>https://orcid.org/0000-0002-4031-2178</orcidid><orcidid>https://orcid.org/0000-0002-8622-8836</orcidid><orcidid>https://orcid.org/0000-0003-2982-7127</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-6694
ispartof Cancers, 2023-01, Vol.15 (3), p.760
issn 2072-6694
2072-6694
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9913157
source Publicly Available Content Database; PubMed Central
subjects Accuracy
Algorithms
Aneurysms
Artificial intelligence
Biochemistry, Molecular Biology
Biomarkers
Biophysics
Brain cancer
Brain tumors
Cancer
Care and treatment
Chemotherapy
Denaturation
Diagnosis
DNA methylation
Epidermal growth factor receptors
Fluorimetry
Genetic aspects
Glioblastoma
Glioblastoma multiforme
Life Sciences
Lung cancer
Magnetic resonance imaging
Medical prognosis
Neurobiology
Neurons and Cognition
Oncology
Open source software
Patients
Plasma
Support vector machines
Surgery
title Plasma nanoDSF Denaturation Profile at Baseline Is Predictive of Glioblastoma EGFR Status
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A27%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasma%20nanoDSF%20Denaturation%20Profile%20at%20Baseline%20Is%20Predictive%20of%20Glioblastoma%20EGFR%20Status&rft.jtitle=Cancers&rft.au=Eyraud,%20R%C3%A9mi&rft.date=2023-01-26&rft.volume=15&rft.issue=3&rft.spage=760&rft.pages=760-&rft.issn=2072-6694&rft.eissn=2072-6694&rft_id=info:doi/10.3390/cancers15030760&rft_dat=%3Cgale_pubme%3EA743009931%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c522t-6283e36dde37d2048092bde5e4c23e18c836810565f28f5b51e107062583855c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2774874387&rft_id=info:pmid/36765718&rft_galeid=A743009931&rfr_iscdi=true