Loading…
Plasma nanoDSF Denaturation Profile at Baseline Is Predictive of Glioblastoma EGFR Status
Glioblastoma (GBM) is the most frequent and aggressive primary brain tumor in adults. Recently, we demonstrated that plasma denaturation profiles of glioblastoma patients obtained using Differential Scanning Fluorimetry can be automatically distinguished from healthy controls with the help of Artifi...
Saved in:
Published in: | Cancers 2023-01, Vol.15 (3), p.760 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c522t-6283e36dde37d2048092bde5e4c23e18c836810565f28f5b51e107062583855c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c522t-6283e36dde37d2048092bde5e4c23e18c836810565f28f5b51e107062583855c3 |
container_end_page | |
container_issue | 3 |
container_start_page | 760 |
container_title | Cancers |
container_volume | 15 |
creator | Eyraud, Rémi Ayache, Stéphane Tsvetkov, Philipp O Kalidindi, Shanmugha Sri Baksheeva, Viktoriia E Boissonneau, Sébastien Jiguet-Jiglaire, Carine Appay, Romain Nanni-Metellus, Isabelle Chinot, Olivier Devred, François Tabouret, Emeline |
description | Glioblastoma (GBM) is the most frequent and aggressive primary brain tumor in adults. Recently, we demonstrated that plasma denaturation profiles of glioblastoma patients obtained using Differential Scanning Fluorimetry can be automatically distinguished from healthy controls with the help of Artificial Intelligence (AI). Here, we used a set of machine-learning algorithms to automatically classify plasma denaturation profiles of glioblastoma patients according to their EGFR status. We found that Adaboost AI is able to discriminate
alterations in GBM with an 81.5% accuracy. Our study shows that the use of these plasma denaturation profiles could answer the unmet neuro-oncology need for diagnostic predictive biomarker in combination with brain MRI and clinical data, in order to allow for a rapid orientation of patients for a definitive pathological diagnosis and then treatment. We complete this study by showing that discriminating another mutation, MGMT, seems harder, and that post-surgery monitoring using our approach is not conclusive in the 48 h that follow the surgery. |
doi_str_mv | 10.3390/cancers15030760 |
format | article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9913157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743009931</galeid><sourcerecordid>A743009931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-6283e36dde37d2048092bde5e4c23e18c836810565f28f5b51e107062583855c3</originalsourceid><addsrcrecordid>eNptkk1r3DAQhk1paEKSc2_F0Et72ETSWB--FLZJdhNYaGjaQ09CK48TBVtKJXuh_74ym4bNUukgMXrfZ6TRFMV7Ss4AanJujbcYE-UEiBTkTXHEiGQzIerq7c7-sDhN6ZHkAUClkO-KQxBScEnVUfHrtjOpN6U3PlzeLcpL9GYYoxlc8OVtDK3rsDRD-dUk7JzH8iblMDbODm6DZWjLZefCOkOGkDFXy8X38m7IiHRSHLSmS3j6vB4XPxdXPy6uZ6tvy5uL-WpmOWPDTDAFCKJpEGTDSKVIzdYNcqwsA6TKKhCKEi54y1TL15wiJZIIxhUozi0cF1-23Kdx3WNj0Q_RdPoput7EPzoYp1-fePeg78NG1zUFymUGfN4CHvZs1_OVnmIEai65gA3N2k_PyWL4PWIadO-Sxa4zHsOYNJNZyKSiE_bjnvQxjNHnUkyqSskK1I7q3nSonW9DvqOdoHqeFYTUNUxpz_6jyrPB3tngcfqm14bzrcHGkFLE9uVhlOipefRe82THh90yvuj_tQr8BVU-vPc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774874387</pqid></control><display><type>article</type><title>Plasma nanoDSF Denaturation Profile at Baseline Is Predictive of Glioblastoma EGFR Status</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Eyraud, Rémi ; Ayache, Stéphane ; Tsvetkov, Philipp O ; Kalidindi, Shanmugha Sri ; Baksheeva, Viktoriia E ; Boissonneau, Sébastien ; Jiguet-Jiglaire, Carine ; Appay, Romain ; Nanni-Metellus, Isabelle ; Chinot, Olivier ; Devred, François ; Tabouret, Emeline</creator><creatorcontrib>Eyraud, Rémi ; Ayache, Stéphane ; Tsvetkov, Philipp O ; Kalidindi, Shanmugha Sri ; Baksheeva, Viktoriia E ; Boissonneau, Sébastien ; Jiguet-Jiglaire, Carine ; Appay, Romain ; Nanni-Metellus, Isabelle ; Chinot, Olivier ; Devred, François ; Tabouret, Emeline</creatorcontrib><description>Glioblastoma (GBM) is the most frequent and aggressive primary brain tumor in adults. Recently, we demonstrated that plasma denaturation profiles of glioblastoma patients obtained using Differential Scanning Fluorimetry can be automatically distinguished from healthy controls with the help of Artificial Intelligence (AI). Here, we used a set of machine-learning algorithms to automatically classify plasma denaturation profiles of glioblastoma patients according to their EGFR status. We found that Adaboost AI is able to discriminate
alterations in GBM with an 81.5% accuracy. Our study shows that the use of these plasma denaturation profiles could answer the unmet neuro-oncology need for diagnostic predictive biomarker in combination with brain MRI and clinical data, in order to allow for a rapid orientation of patients for a definitive pathological diagnosis and then treatment. We complete this study by showing that discriminating another mutation, MGMT, seems harder, and that post-surgery monitoring using our approach is not conclusive in the 48 h that follow the surgery.</description><identifier>ISSN: 2072-6694</identifier><identifier>EISSN: 2072-6694</identifier><identifier>DOI: 10.3390/cancers15030760</identifier><identifier>PMID: 36765718</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Aneurysms ; Artificial intelligence ; Biochemistry, Molecular Biology ; Biomarkers ; Biophysics ; Brain cancer ; Brain tumors ; Cancer ; Care and treatment ; Chemotherapy ; Denaturation ; Diagnosis ; DNA methylation ; Epidermal growth factor receptors ; Fluorimetry ; Genetic aspects ; Glioblastoma ; Glioblastoma multiforme ; Life Sciences ; Lung cancer ; Magnetic resonance imaging ; Medical prognosis ; Neurobiology ; Neurons and Cognition ; Oncology ; Open source software ; Patients ; Plasma ; Support vector machines ; Surgery</subject><ispartof>Cancers, 2023-01, Vol.15 (3), p.760</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-6283e36dde37d2048092bde5e4c23e18c836810565f28f5b51e107062583855c3</citedby><cites>FETCH-LOGICAL-c522t-6283e36dde37d2048092bde5e4c23e18c836810565f28f5b51e107062583855c3</cites><orcidid>0000-0002-5728-4759 ; 0000-0003-4545-6063 ; 0000-0001-5990-8898 ; 0000-0002-4031-2178 ; 0000-0002-8622-8836 ; 0000-0003-2982-7127</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2774874387/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2774874387?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36765718$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://amu.hal.science/hal-03957563$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Eyraud, Rémi</creatorcontrib><creatorcontrib>Ayache, Stéphane</creatorcontrib><creatorcontrib>Tsvetkov, Philipp O</creatorcontrib><creatorcontrib>Kalidindi, Shanmugha Sri</creatorcontrib><creatorcontrib>Baksheeva, Viktoriia E</creatorcontrib><creatorcontrib>Boissonneau, Sébastien</creatorcontrib><creatorcontrib>Jiguet-Jiglaire, Carine</creatorcontrib><creatorcontrib>Appay, Romain</creatorcontrib><creatorcontrib>Nanni-Metellus, Isabelle</creatorcontrib><creatorcontrib>Chinot, Olivier</creatorcontrib><creatorcontrib>Devred, François</creatorcontrib><creatorcontrib>Tabouret, Emeline</creatorcontrib><title>Plasma nanoDSF Denaturation Profile at Baseline Is Predictive of Glioblastoma EGFR Status</title><title>Cancers</title><addtitle>Cancers (Basel)</addtitle><description>Glioblastoma (GBM) is the most frequent and aggressive primary brain tumor in adults. Recently, we demonstrated that plasma denaturation profiles of glioblastoma patients obtained using Differential Scanning Fluorimetry can be automatically distinguished from healthy controls with the help of Artificial Intelligence (AI). Here, we used a set of machine-learning algorithms to automatically classify plasma denaturation profiles of glioblastoma patients according to their EGFR status. We found that Adaboost AI is able to discriminate
alterations in GBM with an 81.5% accuracy. Our study shows that the use of these plasma denaturation profiles could answer the unmet neuro-oncology need for diagnostic predictive biomarker in combination with brain MRI and clinical data, in order to allow for a rapid orientation of patients for a definitive pathological diagnosis and then treatment. We complete this study by showing that discriminating another mutation, MGMT, seems harder, and that post-surgery monitoring using our approach is not conclusive in the 48 h that follow the surgery.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Aneurysms</subject><subject>Artificial intelligence</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biomarkers</subject><subject>Biophysics</subject><subject>Brain cancer</subject><subject>Brain tumors</subject><subject>Cancer</subject><subject>Care and treatment</subject><subject>Chemotherapy</subject><subject>Denaturation</subject><subject>Diagnosis</subject><subject>DNA methylation</subject><subject>Epidermal growth factor receptors</subject><subject>Fluorimetry</subject><subject>Genetic aspects</subject><subject>Glioblastoma</subject><subject>Glioblastoma multiforme</subject><subject>Life Sciences</subject><subject>Lung cancer</subject><subject>Magnetic resonance imaging</subject><subject>Medical prognosis</subject><subject>Neurobiology</subject><subject>Neurons and Cognition</subject><subject>Oncology</subject><subject>Open source software</subject><subject>Patients</subject><subject>Plasma</subject><subject>Support vector machines</subject><subject>Surgery</subject><issn>2072-6694</issn><issn>2072-6694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptkk1r3DAQhk1paEKSc2_F0Et72ETSWB--FLZJdhNYaGjaQ09CK48TBVtKJXuh_74ym4bNUukgMXrfZ6TRFMV7Ss4AanJujbcYE-UEiBTkTXHEiGQzIerq7c7-sDhN6ZHkAUClkO-KQxBScEnVUfHrtjOpN6U3PlzeLcpL9GYYoxlc8OVtDK3rsDRD-dUk7JzH8iblMDbODm6DZWjLZefCOkOGkDFXy8X38m7IiHRSHLSmS3j6vB4XPxdXPy6uZ6tvy5uL-WpmOWPDTDAFCKJpEGTDSKVIzdYNcqwsA6TKKhCKEi54y1TL15wiJZIIxhUozi0cF1-23Kdx3WNj0Q_RdPoput7EPzoYp1-fePeg78NG1zUFymUGfN4CHvZs1_OVnmIEai65gA3N2k_PyWL4PWIadO-Sxa4zHsOYNJNZyKSiE_bjnvQxjNHnUkyqSskK1I7q3nSonW9DvqOdoHqeFYTUNUxpz_6jyrPB3tngcfqm14bzrcHGkFLE9uVhlOipefRe82THh90yvuj_tQr8BVU-vPc</recordid><startdate>20230126</startdate><enddate>20230126</enddate><creator>Eyraud, Rémi</creator><creator>Ayache, Stéphane</creator><creator>Tsvetkov, Philipp O</creator><creator>Kalidindi, Shanmugha Sri</creator><creator>Baksheeva, Viktoriia E</creator><creator>Boissonneau, Sébastien</creator><creator>Jiguet-Jiglaire, Carine</creator><creator>Appay, Romain</creator><creator>Nanni-Metellus, Isabelle</creator><creator>Chinot, Olivier</creator><creator>Devred, François</creator><creator>Tabouret, Emeline</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7TO</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5728-4759</orcidid><orcidid>https://orcid.org/0000-0003-4545-6063</orcidid><orcidid>https://orcid.org/0000-0001-5990-8898</orcidid><orcidid>https://orcid.org/0000-0002-4031-2178</orcidid><orcidid>https://orcid.org/0000-0002-8622-8836</orcidid><orcidid>https://orcid.org/0000-0003-2982-7127</orcidid></search><sort><creationdate>20230126</creationdate><title>Plasma nanoDSF Denaturation Profile at Baseline Is Predictive of Glioblastoma EGFR Status</title><author>Eyraud, Rémi ; Ayache, Stéphane ; Tsvetkov, Philipp O ; Kalidindi, Shanmugha Sri ; Baksheeva, Viktoriia E ; Boissonneau, Sébastien ; Jiguet-Jiglaire, Carine ; Appay, Romain ; Nanni-Metellus, Isabelle ; Chinot, Olivier ; Devred, François ; Tabouret, Emeline</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-6283e36dde37d2048092bde5e4c23e18c836810565f28f5b51e107062583855c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Aneurysms</topic><topic>Artificial intelligence</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biomarkers</topic><topic>Biophysics</topic><topic>Brain cancer</topic><topic>Brain tumors</topic><topic>Cancer</topic><topic>Care and treatment</topic><topic>Chemotherapy</topic><topic>Denaturation</topic><topic>Diagnosis</topic><topic>DNA methylation</topic><topic>Epidermal growth factor receptors</topic><topic>Fluorimetry</topic><topic>Genetic aspects</topic><topic>Glioblastoma</topic><topic>Glioblastoma multiforme</topic><topic>Life Sciences</topic><topic>Lung cancer</topic><topic>Magnetic resonance imaging</topic><topic>Medical prognosis</topic><topic>Neurobiology</topic><topic>Neurons and Cognition</topic><topic>Oncology</topic><topic>Open source software</topic><topic>Patients</topic><topic>Plasma</topic><topic>Support vector machines</topic><topic>Surgery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eyraud, Rémi</creatorcontrib><creatorcontrib>Ayache, Stéphane</creatorcontrib><creatorcontrib>Tsvetkov, Philipp O</creatorcontrib><creatorcontrib>Kalidindi, Shanmugha Sri</creatorcontrib><creatorcontrib>Baksheeva, Viktoriia E</creatorcontrib><creatorcontrib>Boissonneau, Sébastien</creatorcontrib><creatorcontrib>Jiguet-Jiglaire, Carine</creatorcontrib><creatorcontrib>Appay, Romain</creatorcontrib><creatorcontrib>Nanni-Metellus, Isabelle</creatorcontrib><creatorcontrib>Chinot, Olivier</creatorcontrib><creatorcontrib>Devred, François</creatorcontrib><creatorcontrib>Tabouret, Emeline</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>Biological Sciences</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eyraud, Rémi</au><au>Ayache, Stéphane</au><au>Tsvetkov, Philipp O</au><au>Kalidindi, Shanmugha Sri</au><au>Baksheeva, Viktoriia E</au><au>Boissonneau, Sébastien</au><au>Jiguet-Jiglaire, Carine</au><au>Appay, Romain</au><au>Nanni-Metellus, Isabelle</au><au>Chinot, Olivier</au><au>Devred, François</au><au>Tabouret, Emeline</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasma nanoDSF Denaturation Profile at Baseline Is Predictive of Glioblastoma EGFR Status</atitle><jtitle>Cancers</jtitle><addtitle>Cancers (Basel)</addtitle><date>2023-01-26</date><risdate>2023</risdate><volume>15</volume><issue>3</issue><spage>760</spage><pages>760-</pages><issn>2072-6694</issn><eissn>2072-6694</eissn><abstract>Glioblastoma (GBM) is the most frequent and aggressive primary brain tumor in adults. Recently, we demonstrated that plasma denaturation profiles of glioblastoma patients obtained using Differential Scanning Fluorimetry can be automatically distinguished from healthy controls with the help of Artificial Intelligence (AI). Here, we used a set of machine-learning algorithms to automatically classify plasma denaturation profiles of glioblastoma patients according to their EGFR status. We found that Adaboost AI is able to discriminate
alterations in GBM with an 81.5% accuracy. Our study shows that the use of these plasma denaturation profiles could answer the unmet neuro-oncology need for diagnostic predictive biomarker in combination with brain MRI and clinical data, in order to allow for a rapid orientation of patients for a definitive pathological diagnosis and then treatment. We complete this study by showing that discriminating another mutation, MGMT, seems harder, and that post-surgery monitoring using our approach is not conclusive in the 48 h that follow the surgery.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36765718</pmid><doi>10.3390/cancers15030760</doi><orcidid>https://orcid.org/0000-0002-5728-4759</orcidid><orcidid>https://orcid.org/0000-0003-4545-6063</orcidid><orcidid>https://orcid.org/0000-0001-5990-8898</orcidid><orcidid>https://orcid.org/0000-0002-4031-2178</orcidid><orcidid>https://orcid.org/0000-0002-8622-8836</orcidid><orcidid>https://orcid.org/0000-0003-2982-7127</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-6694 |
ispartof | Cancers, 2023-01, Vol.15 (3), p.760 |
issn | 2072-6694 2072-6694 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9913157 |
source | Publicly Available Content Database; PubMed Central |
subjects | Accuracy Algorithms Aneurysms Artificial intelligence Biochemistry, Molecular Biology Biomarkers Biophysics Brain cancer Brain tumors Cancer Care and treatment Chemotherapy Denaturation Diagnosis DNA methylation Epidermal growth factor receptors Fluorimetry Genetic aspects Glioblastoma Glioblastoma multiforme Life Sciences Lung cancer Magnetic resonance imaging Medical prognosis Neurobiology Neurons and Cognition Oncology Open source software Patients Plasma Support vector machines Surgery |
title | Plasma nanoDSF Denaturation Profile at Baseline Is Predictive of Glioblastoma EGFR Status |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A27%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasma%20nanoDSF%20Denaturation%20Profile%20at%20Baseline%20Is%20Predictive%20of%20Glioblastoma%20EGFR%20Status&rft.jtitle=Cancers&rft.au=Eyraud,%20R%C3%A9mi&rft.date=2023-01-26&rft.volume=15&rft.issue=3&rft.spage=760&rft.pages=760-&rft.issn=2072-6694&rft.eissn=2072-6694&rft_id=info:doi/10.3390/cancers15030760&rft_dat=%3Cgale_pubme%3EA743009931%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c522t-6283e36dde37d2048092bde5e4c23e18c836810565f28f5b51e107062583855c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2774874387&rft_id=info:pmid/36765718&rft_galeid=A743009931&rfr_iscdi=true |