Loading…
Synthesis of Novel Shape Memory Thermoplastic Polyurethanes (SMTPUs) from Bio-Based Materials for Application in 3D/4D Printing Filaments
Bio-based thermoplastic polyurethanes have attracted increasing attention as advanced shape memory materials. Using the prepolymer method, novel fast-responding shape memory thermoplastic polyurethanes (SMTPUs) were prepared from 100% bio-based polyester polyol, poly-propylene succinate derived from...
Saved in:
Published in: | Materials 2023-01, Vol.16 (3), p.1072 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Bio-based thermoplastic polyurethanes have attracted increasing attention as advanced shape memory materials. Using the prepolymer method, novel fast-responding shape memory thermoplastic polyurethanes (SMTPUs) were prepared from 100% bio-based polyester polyol, poly-propylene succinate derived from corn oil, diphenyl methane diisocyanate, and bio-based 1,3-propanediol as a chain extender. The morphologies of the SMTPUs were investigated by Fourier transform infrared spectroscopy, atomic force microscopy, and X-ray diffraction, which revealed the interdomain spacing between the hard and soft phases, the degree of phase separation, and the intermixing level between the hard and soft phases. The thermal and mechanical properties of the SMTPUs were also investigated, wherein a high hard segment content imparted unique properties that rendered the SMTPUs suitable for shape memory applications at varying temperatures. More specifically, the SMTPUs exhibited a high level of elastic elongation and good mechanical strength. Following compositional optimization, a tensile strength of 24-27 MPa was achieved, in addition to an elongation at break of 358-552% and a hardness of 84-92 Shore A. Moreover, the bio-based SMTPU exhibited a shape recovery of 100%, thereby indicating its potential for use as an advanced temperature-dependent shape memory material with an excellent shape recoverability. |
---|---|
ISSN: | 1996-1944 1996-1944 |
DOI: | 10.3390/ma16031072 |