Loading…
How Adsorbed Oxygen Atoms Inhibit Hydrogen Dissociation on Tungsten Surfaces
Hydrogen molecules dissociate on clean W(110) surfaces. This reaction is progressively inhibited as the tungsten surface is precovered with oxygen. We use density functional theory and ab initio molecular dynamics to rationalize, at the atomic scale, the influence of the adsorbed O atoms on the H2 d...
Saved in:
Published in: | The journal of physical chemistry letters 2023-02, Vol.14 (5), p.1246-1252 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a479t-bea49180e55fea7c0a582cf0d8eb2518944216623631f3f77227237914e747a13 |
---|---|
cites | cdi_FETCH-LOGICAL-a479t-bea49180e55fea7c0a582cf0d8eb2518944216623631f3f77227237914e747a13 |
container_end_page | 1252 |
container_issue | 5 |
container_start_page | 1246 |
container_title | The journal of physical chemistry letters |
container_volume | 14 |
creator | Rodríguez-Fernández, A. Bonnet, L. Larrégaray, P. Díez Muiño, R. |
description | Hydrogen molecules dissociate on clean W(110) surfaces. This reaction is progressively inhibited as the tungsten surface is precovered with oxygen. We use density functional theory and ab initio molecular dynamics to rationalize, at the atomic scale, the influence of the adsorbed O atoms on the H2 dissociation process. The reaction probability is calculated for kinetic energies below 300 meV and different O nominal coverages. We show that the adsorbed O atoms act as repulsive centers that modulate the dynamics of the impinging H2 molecules by closing dissociation pathways. In agreement with existing experimental information, H2 dissociation is absent for an O coverage of half a monolayer. The results show that the influence of O adsorbates on the dissociation dynamics on W(110) goes much beyond the blocking of possible H adsorption sites. Adsorbed O atoms create a sort of chemical shield at the surface that prevents further approach and dissociation of the H2 molecules. |
doi_str_mv | 10.1021/acs.jpclett.2c03684 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9923735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2771331172</sourcerecordid><originalsourceid>FETCH-LOGICAL-a479t-bea49180e55fea7c0a582cf0d8eb2518944216623631f3f77227237914e747a13</originalsourceid><addsrcrecordid>eNp9kUFvGyEQhVHUKHbd_oJK1R6bgx0G2IW9VLLcJI5kKYckZ8SyrE20XlxgnfrfB9dOlOQQCQn0Zt43wEPoB-AJYAIXSofJ40a3JsYJ0ZgWgp2gIZRMjDmI_Mub8wB9DeER46LEgp-hAS2SWjAYosXcPWXTOjhfmTq7_bdbmi6bRrcO2U23spWN2XxXe7eX_9gQnLYqWtdlad333TLEVLjrfaO0Cd_QaaPaYL4f9xF6uLq8n83Hi9vrm9l0MVaMl3FcGcVKENjkeWMU11jlgugG18JUJAdRMkagKAgtKDS04ZwQTigvgRnOuAI6Qr8P3E1frU2tTRe9auXG27XyO-mUle8rnV3JpdvKskwcmifA-QGw-mCbTxdyr2FGGAYmtvthv47DvPvbmxDl2gZt2lZ1xvVBEs6BUoB0xRGih1btXQjeNK9swHKfmUyZyWNm8phZcv18-5pXz0tIqeHi0PDf7Xrfpc_9FPkMdtylKA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2771331172</pqid></control><display><type>article</type><title>How Adsorbed Oxygen Atoms Inhibit Hydrogen Dissociation on Tungsten Surfaces</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Rodríguez-Fernández, A. ; Bonnet, L. ; Larrégaray, P. ; Díez Muiño, R.</creator><creatorcontrib>Rodríguez-Fernández, A. ; Bonnet, L. ; Larrégaray, P. ; Díez Muiño, R.</creatorcontrib><description>Hydrogen molecules dissociate on clean W(110) surfaces. This reaction is progressively inhibited as the tungsten surface is precovered with oxygen. We use density functional theory and ab initio molecular dynamics to rationalize, at the atomic scale, the influence of the adsorbed O atoms on the H2 dissociation process. The reaction probability is calculated for kinetic energies below 300 meV and different O nominal coverages. We show that the adsorbed O atoms act as repulsive centers that modulate the dynamics of the impinging H2 molecules by closing dissociation pathways. In agreement with existing experimental information, H2 dissociation is absent for an O coverage of half a monolayer. The results show that the influence of O adsorbates on the dissociation dynamics on W(110) goes much beyond the blocking of possible H adsorption sites. Adsorbed O atoms create a sort of chemical shield at the surface that prevents further approach and dissociation of the H2 molecules.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.2c03684</identifier><identifier>PMID: 36718641</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Chemical Sciences ; Letter ; Physical Insights into Chemistry, Catalysis, and Interfaces</subject><ispartof>The journal of physical chemistry letters, 2023-02, Vol.14 (5), p.1246-1252</ispartof><rights>2023 The Authors. Published by American Chemical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2023 The Authors. Published by American Chemical Society 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a479t-bea49180e55fea7c0a582cf0d8eb2518944216623631f3f77227237914e747a13</citedby><cites>FETCH-LOGICAL-a479t-bea49180e55fea7c0a582cf0d8eb2518944216623631f3f77227237914e747a13</cites><orcidid>0000-0002-4022-2826 ; 0000-0001-8593-0327 ; 0000-0002-1643-3164</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36718641$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04240148$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Rodríguez-Fernández, A.</creatorcontrib><creatorcontrib>Bonnet, L.</creatorcontrib><creatorcontrib>Larrégaray, P.</creatorcontrib><creatorcontrib>Díez Muiño, R.</creatorcontrib><title>How Adsorbed Oxygen Atoms Inhibit Hydrogen Dissociation on Tungsten Surfaces</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>Hydrogen molecules dissociate on clean W(110) surfaces. This reaction is progressively inhibited as the tungsten surface is precovered with oxygen. We use density functional theory and ab initio molecular dynamics to rationalize, at the atomic scale, the influence of the adsorbed O atoms on the H2 dissociation process. The reaction probability is calculated for kinetic energies below 300 meV and different O nominal coverages. We show that the adsorbed O atoms act as repulsive centers that modulate the dynamics of the impinging H2 molecules by closing dissociation pathways. In agreement with existing experimental information, H2 dissociation is absent for an O coverage of half a monolayer. The results show that the influence of O adsorbates on the dissociation dynamics on W(110) goes much beyond the blocking of possible H adsorption sites. Adsorbed O atoms create a sort of chemical shield at the surface that prevents further approach and dissociation of the H2 molecules.</description><subject>Chemical Sciences</subject><subject>Letter</subject><subject>Physical Insights into Chemistry, Catalysis, and Interfaces</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kUFvGyEQhVHUKHbd_oJK1R6bgx0G2IW9VLLcJI5kKYckZ8SyrE20XlxgnfrfB9dOlOQQCQn0Zt43wEPoB-AJYAIXSofJ40a3JsYJ0ZgWgp2gIZRMjDmI_Mub8wB9DeER46LEgp-hAS2SWjAYosXcPWXTOjhfmTq7_bdbmi6bRrcO2U23spWN2XxXe7eX_9gQnLYqWtdlad333TLEVLjrfaO0Cd_QaaPaYL4f9xF6uLq8n83Hi9vrm9l0MVaMl3FcGcVKENjkeWMU11jlgugG18JUJAdRMkagKAgtKDS04ZwQTigvgRnOuAI6Qr8P3E1frU2tTRe9auXG27XyO-mUle8rnV3JpdvKskwcmifA-QGw-mCbTxdyr2FGGAYmtvthv47DvPvbmxDl2gZt2lZ1xvVBEs6BUoB0xRGih1btXQjeNK9swHKfmUyZyWNm8phZcv18-5pXz0tIqeHi0PDf7Xrfpc_9FPkMdtylKA</recordid><startdate>20230209</startdate><enddate>20230209</enddate><creator>Rodríguez-Fernández, A.</creator><creator>Bonnet, L.</creator><creator>Larrégaray, P.</creator><creator>Díez Muiño, R.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4022-2826</orcidid><orcidid>https://orcid.org/0000-0001-8593-0327</orcidid><orcidid>https://orcid.org/0000-0002-1643-3164</orcidid></search><sort><creationdate>20230209</creationdate><title>How Adsorbed Oxygen Atoms Inhibit Hydrogen Dissociation on Tungsten Surfaces</title><author>Rodríguez-Fernández, A. ; Bonnet, L. ; Larrégaray, P. ; Díez Muiño, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a479t-bea49180e55fea7c0a582cf0d8eb2518944216623631f3f77227237914e747a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemical Sciences</topic><topic>Letter</topic><topic>Physical Insights into Chemistry, Catalysis, and Interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodríguez-Fernández, A.</creatorcontrib><creatorcontrib>Bonnet, L.</creatorcontrib><creatorcontrib>Larrégaray, P.</creatorcontrib><creatorcontrib>Díez Muiño, R.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodríguez-Fernández, A.</au><au>Bonnet, L.</au><au>Larrégaray, P.</au><au>Díez Muiño, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How Adsorbed Oxygen Atoms Inhibit Hydrogen Dissociation on Tungsten Surfaces</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2023-02-09</date><risdate>2023</risdate><volume>14</volume><issue>5</issue><spage>1246</spage><epage>1252</epage><pages>1246-1252</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Hydrogen molecules dissociate on clean W(110) surfaces. This reaction is progressively inhibited as the tungsten surface is precovered with oxygen. We use density functional theory and ab initio molecular dynamics to rationalize, at the atomic scale, the influence of the adsorbed O atoms on the H2 dissociation process. The reaction probability is calculated for kinetic energies below 300 meV and different O nominal coverages. We show that the adsorbed O atoms act as repulsive centers that modulate the dynamics of the impinging H2 molecules by closing dissociation pathways. In agreement with existing experimental information, H2 dissociation is absent for an O coverage of half a monolayer. The results show that the influence of O adsorbates on the dissociation dynamics on W(110) goes much beyond the blocking of possible H adsorption sites. Adsorbed O atoms create a sort of chemical shield at the surface that prevents further approach and dissociation of the H2 molecules.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36718641</pmid><doi>10.1021/acs.jpclett.2c03684</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4022-2826</orcidid><orcidid>https://orcid.org/0000-0001-8593-0327</orcidid><orcidid>https://orcid.org/0000-0002-1643-3164</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1948-7185 |
ispartof | The journal of physical chemistry letters, 2023-02, Vol.14 (5), p.1246-1252 |
issn | 1948-7185 1948-7185 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9923735 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Chemical Sciences Letter Physical Insights into Chemistry, Catalysis, and Interfaces |
title | How Adsorbed Oxygen Atoms Inhibit Hydrogen Dissociation on Tungsten Surfaces |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T06%3A12%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20Adsorbed%20Oxygen%20Atoms%20Inhibit%20Hydrogen%20Dissociation%20on%20Tungsten%20Surfaces&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Rodri%CC%81guez-Ferna%CC%81ndez,%20A.&rft.date=2023-02-09&rft.volume=14&rft.issue=5&rft.spage=1246&rft.epage=1252&rft.pages=1246-1252&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.2c03684&rft_dat=%3Cproquest_pubme%3E2771331172%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a479t-bea49180e55fea7c0a582cf0d8eb2518944216623631f3f77227237914e747a13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2771331172&rft_id=info:pmid/36718641&rfr_iscdi=true |