Loading…

How Adsorbed Oxygen Atoms Inhibit Hydrogen Dissociation on Tungsten Surfaces

Hydrogen molecules dissociate on clean W(110) surfaces. This reaction is progressively inhibited as the tungsten surface is precovered with oxygen. We use density functional theory and ab initio molecular dynamics to rationalize, at the atomic scale, the influence of the adsorbed O atoms on the H2 d...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry letters 2023-02, Vol.14 (5), p.1246-1252
Main Authors: Rodríguez-Fernández, A., Bonnet, L., Larrégaray, P., Díez Muiño, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a479t-bea49180e55fea7c0a582cf0d8eb2518944216623631f3f77227237914e747a13
cites cdi_FETCH-LOGICAL-a479t-bea49180e55fea7c0a582cf0d8eb2518944216623631f3f77227237914e747a13
container_end_page 1252
container_issue 5
container_start_page 1246
container_title The journal of physical chemistry letters
container_volume 14
creator Rodríguez-Fernández, A.
Bonnet, L.
Larrégaray, P.
Díez Muiño, R.
description Hydrogen molecules dissociate on clean W(110) surfaces. This reaction is progressively inhibited as the tungsten surface is precovered with oxygen. We use density functional theory and ab initio molecular dynamics to rationalize, at the atomic scale, the influence of the adsorbed O atoms on the H2 dissociation process. The reaction probability is calculated for kinetic energies below 300 meV and different O nominal coverages. We show that the adsorbed O atoms act as repulsive centers that modulate the dynamics of the impinging H2 molecules by closing dissociation pathways. In agreement with existing experimental information, H2 dissociation is absent for an O coverage of half a monolayer. The results show that the influence of O adsorbates on the dissociation dynamics on W(110) goes much beyond the blocking of possible H adsorption sites. Adsorbed O atoms create a sort of chemical shield at the surface that prevents further approach and dissociation of the H2 molecules.
doi_str_mv 10.1021/acs.jpclett.2c03684
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9923735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2771331172</sourcerecordid><originalsourceid>FETCH-LOGICAL-a479t-bea49180e55fea7c0a582cf0d8eb2518944216623631f3f77227237914e747a13</originalsourceid><addsrcrecordid>eNp9kUFvGyEQhVHUKHbd_oJK1R6bgx0G2IW9VLLcJI5kKYckZ8SyrE20XlxgnfrfB9dOlOQQCQn0Zt43wEPoB-AJYAIXSofJ40a3JsYJ0ZgWgp2gIZRMjDmI_Mub8wB9DeER46LEgp-hAS2SWjAYosXcPWXTOjhfmTq7_bdbmi6bRrcO2U23spWN2XxXe7eX_9gQnLYqWtdlad333TLEVLjrfaO0Cd_QaaPaYL4f9xF6uLq8n83Hi9vrm9l0MVaMl3FcGcVKENjkeWMU11jlgugG18JUJAdRMkagKAgtKDS04ZwQTigvgRnOuAI6Qr8P3E1frU2tTRe9auXG27XyO-mUle8rnV3JpdvKskwcmifA-QGw-mCbTxdyr2FGGAYmtvthv47DvPvbmxDl2gZt2lZ1xvVBEs6BUoB0xRGih1btXQjeNK9swHKfmUyZyWNm8phZcv18-5pXz0tIqeHi0PDf7Xrfpc_9FPkMdtylKA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2771331172</pqid></control><display><type>article</type><title>How Adsorbed Oxygen Atoms Inhibit Hydrogen Dissociation on Tungsten Surfaces</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Rodríguez-Fernández, A. ; Bonnet, L. ; Larrégaray, P. ; Díez Muiño, R.</creator><creatorcontrib>Rodríguez-Fernández, A. ; Bonnet, L. ; Larrégaray, P. ; Díez Muiño, R.</creatorcontrib><description>Hydrogen molecules dissociate on clean W(110) surfaces. This reaction is progressively inhibited as the tungsten surface is precovered with oxygen. We use density functional theory and ab initio molecular dynamics to rationalize, at the atomic scale, the influence of the adsorbed O atoms on the H2 dissociation process. The reaction probability is calculated for kinetic energies below 300 meV and different O nominal coverages. We show that the adsorbed O atoms act as repulsive centers that modulate the dynamics of the impinging H2 molecules by closing dissociation pathways. In agreement with existing experimental information, H2 dissociation is absent for an O coverage of half a monolayer. The results show that the influence of O adsorbates on the dissociation dynamics on W(110) goes much beyond the blocking of possible H adsorption sites. Adsorbed O atoms create a sort of chemical shield at the surface that prevents further approach and dissociation of the H2 molecules.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.2c03684</identifier><identifier>PMID: 36718641</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Chemical Sciences ; Letter ; Physical Insights into Chemistry, Catalysis, and Interfaces</subject><ispartof>The journal of physical chemistry letters, 2023-02, Vol.14 (5), p.1246-1252</ispartof><rights>2023 The Authors. Published by American Chemical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2023 The Authors. Published by American Chemical Society 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a479t-bea49180e55fea7c0a582cf0d8eb2518944216623631f3f77227237914e747a13</citedby><cites>FETCH-LOGICAL-a479t-bea49180e55fea7c0a582cf0d8eb2518944216623631f3f77227237914e747a13</cites><orcidid>0000-0002-4022-2826 ; 0000-0001-8593-0327 ; 0000-0002-1643-3164</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36718641$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04240148$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Rodríguez-Fernández, A.</creatorcontrib><creatorcontrib>Bonnet, L.</creatorcontrib><creatorcontrib>Larrégaray, P.</creatorcontrib><creatorcontrib>Díez Muiño, R.</creatorcontrib><title>How Adsorbed Oxygen Atoms Inhibit Hydrogen Dissociation on Tungsten Surfaces</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>Hydrogen molecules dissociate on clean W(110) surfaces. This reaction is progressively inhibited as the tungsten surface is precovered with oxygen. We use density functional theory and ab initio molecular dynamics to rationalize, at the atomic scale, the influence of the adsorbed O atoms on the H2 dissociation process. The reaction probability is calculated for kinetic energies below 300 meV and different O nominal coverages. We show that the adsorbed O atoms act as repulsive centers that modulate the dynamics of the impinging H2 molecules by closing dissociation pathways. In agreement with existing experimental information, H2 dissociation is absent for an O coverage of half a monolayer. The results show that the influence of O adsorbates on the dissociation dynamics on W(110) goes much beyond the blocking of possible H adsorption sites. Adsorbed O atoms create a sort of chemical shield at the surface that prevents further approach and dissociation of the H2 molecules.</description><subject>Chemical Sciences</subject><subject>Letter</subject><subject>Physical Insights into Chemistry, Catalysis, and Interfaces</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kUFvGyEQhVHUKHbd_oJK1R6bgx0G2IW9VLLcJI5kKYckZ8SyrE20XlxgnfrfB9dOlOQQCQn0Zt43wEPoB-AJYAIXSofJ40a3JsYJ0ZgWgp2gIZRMjDmI_Mub8wB9DeER46LEgp-hAS2SWjAYosXcPWXTOjhfmTq7_bdbmi6bRrcO2U23spWN2XxXe7eX_9gQnLYqWtdlad333TLEVLjrfaO0Cd_QaaPaYL4f9xF6uLq8n83Hi9vrm9l0MVaMl3FcGcVKENjkeWMU11jlgugG18JUJAdRMkagKAgtKDS04ZwQTigvgRnOuAI6Qr8P3E1frU2tTRe9auXG27XyO-mUle8rnV3JpdvKskwcmifA-QGw-mCbTxdyr2FGGAYmtvthv47DvPvbmxDl2gZt2lZ1xvVBEs6BUoB0xRGih1btXQjeNK9swHKfmUyZyWNm8phZcv18-5pXz0tIqeHi0PDf7Xrfpc_9FPkMdtylKA</recordid><startdate>20230209</startdate><enddate>20230209</enddate><creator>Rodríguez-Fernández, A.</creator><creator>Bonnet, L.</creator><creator>Larrégaray, P.</creator><creator>Díez Muiño, R.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4022-2826</orcidid><orcidid>https://orcid.org/0000-0001-8593-0327</orcidid><orcidid>https://orcid.org/0000-0002-1643-3164</orcidid></search><sort><creationdate>20230209</creationdate><title>How Adsorbed Oxygen Atoms Inhibit Hydrogen Dissociation on Tungsten Surfaces</title><author>Rodríguez-Fernández, A. ; Bonnet, L. ; Larrégaray, P. ; Díez Muiño, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a479t-bea49180e55fea7c0a582cf0d8eb2518944216623631f3f77227237914e747a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemical Sciences</topic><topic>Letter</topic><topic>Physical Insights into Chemistry, Catalysis, and Interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodríguez-Fernández, A.</creatorcontrib><creatorcontrib>Bonnet, L.</creatorcontrib><creatorcontrib>Larrégaray, P.</creatorcontrib><creatorcontrib>Díez Muiño, R.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodríguez-Fernández, A.</au><au>Bonnet, L.</au><au>Larrégaray, P.</au><au>Díez Muiño, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How Adsorbed Oxygen Atoms Inhibit Hydrogen Dissociation on Tungsten Surfaces</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2023-02-09</date><risdate>2023</risdate><volume>14</volume><issue>5</issue><spage>1246</spage><epage>1252</epage><pages>1246-1252</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Hydrogen molecules dissociate on clean W(110) surfaces. This reaction is progressively inhibited as the tungsten surface is precovered with oxygen. We use density functional theory and ab initio molecular dynamics to rationalize, at the atomic scale, the influence of the adsorbed O atoms on the H2 dissociation process. The reaction probability is calculated for kinetic energies below 300 meV and different O nominal coverages. We show that the adsorbed O atoms act as repulsive centers that modulate the dynamics of the impinging H2 molecules by closing dissociation pathways. In agreement with existing experimental information, H2 dissociation is absent for an O coverage of half a monolayer. The results show that the influence of O adsorbates on the dissociation dynamics on W(110) goes much beyond the blocking of possible H adsorption sites. Adsorbed O atoms create a sort of chemical shield at the surface that prevents further approach and dissociation of the H2 molecules.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36718641</pmid><doi>10.1021/acs.jpclett.2c03684</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4022-2826</orcidid><orcidid>https://orcid.org/0000-0001-8593-0327</orcidid><orcidid>https://orcid.org/0000-0002-1643-3164</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2023-02, Vol.14 (5), p.1246-1252
issn 1948-7185
1948-7185
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9923735
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Chemical Sciences
Letter
Physical Insights into Chemistry, Catalysis, and Interfaces
title How Adsorbed Oxygen Atoms Inhibit Hydrogen Dissociation on Tungsten Surfaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T06%3A12%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20Adsorbed%20Oxygen%20Atoms%20Inhibit%20Hydrogen%20Dissociation%20on%20Tungsten%20Surfaces&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Rodri%CC%81guez-Ferna%CC%81ndez,%20A.&rft.date=2023-02-09&rft.volume=14&rft.issue=5&rft.spage=1246&rft.epage=1252&rft.pages=1246-1252&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.2c03684&rft_dat=%3Cproquest_pubme%3E2771331172%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a479t-bea49180e55fea7c0a582cf0d8eb2518944216623631f3f77227237914e747a13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2771331172&rft_id=info:pmid/36718641&rfr_iscdi=true