Loading…

SZC-6, a small-molecule activator of SIRT3, attenuates cardiac hypertrophy in mice

Sirtuin3 (SIRT3), a class III histone deacetylase, is implicated in various cardiovascular diseases as a novel therapeutic target. SIRT3 has been proven to be cardioprotective in a model of Ang II-induced cardiac hypertrophy. However, a few small-molecule compounds targeting deacetylases could activ...

Full description

Saved in:
Bibliographic Details
Published in:Acta pharmacologica Sinica 2023-03, Vol.44 (3), p.546-560
Main Authors: Li, Ze-yu, Lu, Guo-qing, Lu, Jing, Wang, Pan-xia, Zhang, Xiao-lei, Zou, Yong, Liu, Pei-qing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Sirtuin3 (SIRT3), a class III histone deacetylase, is implicated in various cardiovascular diseases as a novel therapeutic target. SIRT3 has been proven to be cardioprotective in a model of Ang II-induced cardiac hypertrophy. However, a few small-molecule compounds targeting deacetylases could activate SIRT3. In this study, we generated a novel SIRT3 activator, 3-(2-bromo-4-hydroxyphenyl)-7-hydroxy-2H-chromen-2-one (SZC-6), through structural optimization of the first SIRT3 agonist C12. We demonstrated that SZC-6 directly bound to SIRT3 with K d value of 15 μM, and increased SIRT3 deacetylation activity with EC 50 value of 23.2 ± 3.3 µM. In neonatal rat cardiomyocytes (NRCMs), pretreatment with SZC-6 (10, 20, 40 µM) dose-dependently attenuated isoproterenol (ISO)-induced hypertrophic responses. Administration of SZC-6 (20, 40 and 60 mg·kg −1 ·d −1 , s.c.) for 2 weeks starting from one week prior ISO treatment dose-dependently reversed ISO-induced impairment of diastolic and systolic cardiac function in wild-type mice, but not in SIRT3 knockdown mice. We showed that SZC-6 (10, 20, 40 µM) dose-dependently inhibited cardiac fibroblast proliferation and differentiation into myofibroblasts, which was abolished in SIRT3-knockdown mice. We further revealed that activation of SIRT3 by SZC-6 increased ATP production and rate of mitochondrial oxygen consumption, and reduced ROS, improving mitochondrial function in ISO-treated NRCMs. We also found that SZC-6 dose-dependently enhanced LKB1 phosphorylation, thereby promoting AMPK activation to inhibit Drp1-dependent mitochondrial fragmentation. Taken together, these results demonstrate that SZC-6 is a novel SIRT3 agonist with potential value in the treatment of cardiac hypertrophy partly through activation of the LKB1-AMPK pathway.
ISSN:1671-4083
1745-7254
DOI:10.1038/s41401-022-00966-8