Loading…

Large scale similarity search across digital reconstructions of neural morphology

Most functions of the nervous system depend on neuronal and glial morphology. Continuous advances in microscopic imaging and tracing software have provided an increasingly abundant availability of 3D reconstructions of arborizing dendrites, axons, and processes, allowing their detailed study. Howeve...

Full description

Saved in:
Bibliographic Details
Published in:Neuroscience research 2022-08, Vol.181, p.39-45
Main Authors: Ljungquist, Bengt, Akram, Masood A., Ascoli, Giorgio A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c487t-9a288d950637a7620a862918d9e6488fb3f1f20a66baca51a912328eb43a2bf03
cites cdi_FETCH-LOGICAL-c487t-9a288d950637a7620a862918d9e6488fb3f1f20a66baca51a912328eb43a2bf03
container_end_page 45
container_issue
container_start_page 39
container_title Neuroscience research
container_volume 181
creator Ljungquist, Bengt
Akram, Masood A.
Ascoli, Giorgio A.
description Most functions of the nervous system depend on neuronal and glial morphology. Continuous advances in microscopic imaging and tracing software have provided an increasingly abundant availability of 3D reconstructions of arborizing dendrites, axons, and processes, allowing their detailed study. However, efficient, large-scale methods to rank neural morphologies by similarity to an archetype are still lacking. Using the NeuroMorpho.Org database, we present a similarity search software enabling fast morphological comparison of hundreds of thousands of neural reconstructions from any species, brain regions, cell types, and preparation protocols. We compared the performance of different morphological measurements: 1) summary morphometrics calculated by L-Measure, 2) persistence vectors, a vectorized descriptor of branching structure, 3) the combination of the two. In all cases, we also investigated the impact of applying dimensionality reduction using principal component analysis (PCA). We assessed qualitative performance by gauging the ability to rank neurons in order of visual similarity. Moreover, we quantified information content by examining explained variance and benchmarked the ability to identify occasional duplicate reconstructions of the same specimen. We also compared two different methods for selecting the number of principal components using this benchmark. The results indicate that combining summary morphometrics and persistence vectors with applied PCA using maximum likelihood based automatic dimensionality selection provides an information rich characterization that enables efficient and precise comparison of neural morphology. We have deployed the similarity search as open-source online software both through a user-friendly graphical interface and as an API for programmatic access. [Display omitted] •Implemented similarity search enables fast comparison of neuronal reconstructions.•Our method combines summary morphometrics with descriptors of branching structure.•We evaluated visual similarity, information content, and duplicate detection ability.•Similarity search provided both as GUI and API for NeuroMorpho.Org database.•Code and application are released open source for further community development.
doi_str_mv 10.1016/j.neures.2022.05.004
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9960175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168010222001390</els_id><sourcerecordid>2666547252</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-9a288d950637a7620a862918d9e6488fb3f1f20a66baca51a912328eb43a2bf03</originalsourceid><addsrcrecordid>eNp9UcFq3DAQFaUl2aT5gxJ87MXuSLZk-RIIIWkKC6XQnsVYHu9qsa2tZAf276vtpkl76UUSM2_ePL3H2AcOBQeuPu2KiZZAsRAgRAGyAKjesBXXtcg15_wtWyWYzoGDOGcXMe4AoGyq8oydl1JqqBu5Yt_WGDaURYtDOt3oBgxuPmSRMNhthjb4GLPObdyMQxbI-inOYbGzS4_M99lRROqMPuy3fvCbw3v2rsch0tXzfcl-PNx_v3vM118_f7m7Xee20vWcNyi07hoJqqyxVgJQK9HwVCJVad23Zc_7VFWqRYuSY8NFKTS1VYmi7aG8ZDcn3v3SjtRZmuYkxOyDGzEcjEdn_u1Mbms2_sk0jQJey0Tw8Zkg-J8LxdmMLloaBpzIL9EIpZSsaiFFglYn6G87AvUvaziYYxpmZ05pmGMaBqRJaaSx678lvgz9sf_1D5SMenIUTLSOJkudS1bPpvPu_xt-AVMzn44</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2666547252</pqid></control><display><type>article</type><title>Large scale similarity search across digital reconstructions of neural morphology</title><source>ScienceDirect®</source><source>Elsevier</source><creator>Ljungquist, Bengt ; Akram, Masood A. ; Ascoli, Giorgio A.</creator><creatorcontrib>Ljungquist, Bengt ; Akram, Masood A. ; Ascoli, Giorgio A.</creatorcontrib><description>Most functions of the nervous system depend on neuronal and glial morphology. Continuous advances in microscopic imaging and tracing software have provided an increasingly abundant availability of 3D reconstructions of arborizing dendrites, axons, and processes, allowing their detailed study. However, efficient, large-scale methods to rank neural morphologies by similarity to an archetype are still lacking. Using the NeuroMorpho.Org database, we present a similarity search software enabling fast morphological comparison of hundreds of thousands of neural reconstructions from any species, brain regions, cell types, and preparation protocols. We compared the performance of different morphological measurements: 1) summary morphometrics calculated by L-Measure, 2) persistence vectors, a vectorized descriptor of branching structure, 3) the combination of the two. In all cases, we also investigated the impact of applying dimensionality reduction using principal component analysis (PCA). We assessed qualitative performance by gauging the ability to rank neurons in order of visual similarity. Moreover, we quantified information content by examining explained variance and benchmarked the ability to identify occasional duplicate reconstructions of the same specimen. We also compared two different methods for selecting the number of principal components using this benchmark. The results indicate that combining summary morphometrics and persistence vectors with applied PCA using maximum likelihood based automatic dimensionality selection provides an information rich characterization that enables efficient and precise comparison of neural morphology. We have deployed the similarity search as open-source online software both through a user-friendly graphical interface and as an API for programmatic access. [Display omitted] •Implemented similarity search enables fast comparison of neuronal reconstructions.•Our method combines summary morphometrics with descriptors of branching structure.•We evaluated visual similarity, information content, and duplicate detection ability.•Similarity search provided both as GUI and API for NeuroMorpho.Org database.•Code and application are released open source for further community development.</description><identifier>ISSN: 0168-0102</identifier><identifier>EISSN: 1872-8111</identifier><identifier>DOI: 10.1016/j.neures.2022.05.004</identifier><identifier>PMID: 35580795</identifier><language>eng</language><publisher>Ireland: Elsevier B.V</publisher><subject>Algorithms ; Axons ; Brain ; Likelihood Functions ; Neuroinformatics ; Neuronal Morphology ; Neurons - physiology ; Principal Component Analysis ; Similarity search ; Software ; Software as a Service</subject><ispartof>Neuroscience research, 2022-08, Vol.181, p.39-45</ispartof><rights>2022 Japan Neuroscience Society and Elsevier B.V.</rights><rights>Copyright © 2022 Japan Neuroscience Society and Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-9a288d950637a7620a862918d9e6488fb3f1f20a66baca51a912328eb43a2bf03</citedby><cites>FETCH-LOGICAL-c487t-9a288d950637a7620a862918d9e6488fb3f1f20a66baca51a912328eb43a2bf03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0168010222001390$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27901,27902,45756</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35580795$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ljungquist, Bengt</creatorcontrib><creatorcontrib>Akram, Masood A.</creatorcontrib><creatorcontrib>Ascoli, Giorgio A.</creatorcontrib><title>Large scale similarity search across digital reconstructions of neural morphology</title><title>Neuroscience research</title><addtitle>Neurosci Res</addtitle><description>Most functions of the nervous system depend on neuronal and glial morphology. Continuous advances in microscopic imaging and tracing software have provided an increasingly abundant availability of 3D reconstructions of arborizing dendrites, axons, and processes, allowing their detailed study. However, efficient, large-scale methods to rank neural morphologies by similarity to an archetype are still lacking. Using the NeuroMorpho.Org database, we present a similarity search software enabling fast morphological comparison of hundreds of thousands of neural reconstructions from any species, brain regions, cell types, and preparation protocols. We compared the performance of different morphological measurements: 1) summary morphometrics calculated by L-Measure, 2) persistence vectors, a vectorized descriptor of branching structure, 3) the combination of the two. In all cases, we also investigated the impact of applying dimensionality reduction using principal component analysis (PCA). We assessed qualitative performance by gauging the ability to rank neurons in order of visual similarity. Moreover, we quantified information content by examining explained variance and benchmarked the ability to identify occasional duplicate reconstructions of the same specimen. We also compared two different methods for selecting the number of principal components using this benchmark. The results indicate that combining summary morphometrics and persistence vectors with applied PCA using maximum likelihood based automatic dimensionality selection provides an information rich characterization that enables efficient and precise comparison of neural morphology. We have deployed the similarity search as open-source online software both through a user-friendly graphical interface and as an API for programmatic access. [Display omitted] •Implemented similarity search enables fast comparison of neuronal reconstructions.•Our method combines summary morphometrics with descriptors of branching structure.•We evaluated visual similarity, information content, and duplicate detection ability.•Similarity search provided both as GUI and API for NeuroMorpho.Org database.•Code and application are released open source for further community development.</description><subject>Algorithms</subject><subject>Axons</subject><subject>Brain</subject><subject>Likelihood Functions</subject><subject>Neuroinformatics</subject><subject>Neuronal Morphology</subject><subject>Neurons - physiology</subject><subject>Principal Component Analysis</subject><subject>Similarity search</subject><subject>Software</subject><subject>Software as a Service</subject><issn>0168-0102</issn><issn>1872-8111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UcFq3DAQFaUl2aT5gxJ87MXuSLZk-RIIIWkKC6XQnsVYHu9qsa2tZAf276vtpkl76UUSM2_ePL3H2AcOBQeuPu2KiZZAsRAgRAGyAKjesBXXtcg15_wtWyWYzoGDOGcXMe4AoGyq8oydl1JqqBu5Yt_WGDaURYtDOt3oBgxuPmSRMNhthjb4GLPObdyMQxbI-inOYbGzS4_M99lRROqMPuy3fvCbw3v2rsch0tXzfcl-PNx_v3vM118_f7m7Xee20vWcNyi07hoJqqyxVgJQK9HwVCJVad23Zc_7VFWqRYuSY8NFKTS1VYmi7aG8ZDcn3v3SjtRZmuYkxOyDGzEcjEdn_u1Mbms2_sk0jQJey0Tw8Zkg-J8LxdmMLloaBpzIL9EIpZSsaiFFglYn6G87AvUvaziYYxpmZ05pmGMaBqRJaaSx678lvgz9sf_1D5SMenIUTLSOJkudS1bPpvPu_xt-AVMzn44</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Ljungquist, Bengt</creator><creator>Akram, Masood A.</creator><creator>Ascoli, Giorgio A.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20220801</creationdate><title>Large scale similarity search across digital reconstructions of neural morphology</title><author>Ljungquist, Bengt ; Akram, Masood A. ; Ascoli, Giorgio A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-9a288d950637a7620a862918d9e6488fb3f1f20a66baca51a912328eb43a2bf03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Axons</topic><topic>Brain</topic><topic>Likelihood Functions</topic><topic>Neuroinformatics</topic><topic>Neuronal Morphology</topic><topic>Neurons - physiology</topic><topic>Principal Component Analysis</topic><topic>Similarity search</topic><topic>Software</topic><topic>Software as a Service</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ljungquist, Bengt</creatorcontrib><creatorcontrib>Akram, Masood A.</creatorcontrib><creatorcontrib>Ascoli, Giorgio A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuroscience research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ljungquist, Bengt</au><au>Akram, Masood A.</au><au>Ascoli, Giorgio A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large scale similarity search across digital reconstructions of neural morphology</atitle><jtitle>Neuroscience research</jtitle><addtitle>Neurosci Res</addtitle><date>2022-08-01</date><risdate>2022</risdate><volume>181</volume><spage>39</spage><epage>45</epage><pages>39-45</pages><issn>0168-0102</issn><eissn>1872-8111</eissn><abstract>Most functions of the nervous system depend on neuronal and glial morphology. Continuous advances in microscopic imaging and tracing software have provided an increasingly abundant availability of 3D reconstructions of arborizing dendrites, axons, and processes, allowing their detailed study. However, efficient, large-scale methods to rank neural morphologies by similarity to an archetype are still lacking. Using the NeuroMorpho.Org database, we present a similarity search software enabling fast morphological comparison of hundreds of thousands of neural reconstructions from any species, brain regions, cell types, and preparation protocols. We compared the performance of different morphological measurements: 1) summary morphometrics calculated by L-Measure, 2) persistence vectors, a vectorized descriptor of branching structure, 3) the combination of the two. In all cases, we also investigated the impact of applying dimensionality reduction using principal component analysis (PCA). We assessed qualitative performance by gauging the ability to rank neurons in order of visual similarity. Moreover, we quantified information content by examining explained variance and benchmarked the ability to identify occasional duplicate reconstructions of the same specimen. We also compared two different methods for selecting the number of principal components using this benchmark. The results indicate that combining summary morphometrics and persistence vectors with applied PCA using maximum likelihood based automatic dimensionality selection provides an information rich characterization that enables efficient and precise comparison of neural morphology. We have deployed the similarity search as open-source online software both through a user-friendly graphical interface and as an API for programmatic access. [Display omitted] •Implemented similarity search enables fast comparison of neuronal reconstructions.•Our method combines summary morphometrics with descriptors of branching structure.•We evaluated visual similarity, information content, and duplicate detection ability.•Similarity search provided both as GUI and API for NeuroMorpho.Org database.•Code and application are released open source for further community development.</abstract><cop>Ireland</cop><pub>Elsevier B.V</pub><pmid>35580795</pmid><doi>10.1016/j.neures.2022.05.004</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0168-0102
ispartof Neuroscience research, 2022-08, Vol.181, p.39-45
issn 0168-0102
1872-8111
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9960175
source ScienceDirect®; Elsevier
subjects Algorithms
Axons
Brain
Likelihood Functions
Neuroinformatics
Neuronal Morphology
Neurons - physiology
Principal Component Analysis
Similarity search
Software
Software as a Service
title Large scale similarity search across digital reconstructions of neural morphology
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T15%3A27%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%20scale%20similarity%20search%20across%20digital%20reconstructions%20of%20neural%20morphology&rft.jtitle=Neuroscience%20research&rft.au=Ljungquist,%20Bengt&rft.date=2022-08-01&rft.volume=181&rft.spage=39&rft.epage=45&rft.pages=39-45&rft.issn=0168-0102&rft.eissn=1872-8111&rft_id=info:doi/10.1016/j.neures.2022.05.004&rft_dat=%3Cproquest_pubme%3E2666547252%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c487t-9a288d950637a7620a862918d9e6488fb3f1f20a66baca51a912328eb43a2bf03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2666547252&rft_id=info:pmid/35580795&rfr_iscdi=true