Loading…

Advanced materials engineering in historical gypsum plaster formulations

We show how historical gypsum plaster preparation methods affect the microstructure and the wettability properties of the final stucco materials. We reproduced a traditional Persian recipe ( ~14th century AD), which involves a continuous mechanical treatment during plaster hydration. These samples w...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2023-02, Vol.120 (7), p.e2208836120-e2208836120
Main Authors: Mishmastnehi, Moslem, Van Driessche, Alexander E S, Smales, Glen J, Moya, Alicia, Stawski, Tomasz M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We show how historical gypsum plaster preparation methods affect the microstructure and the wettability properties of the final stucco materials. We reproduced a traditional Persian recipe ( ~14th century AD), which involves a continuous mechanical treatment during plaster hydration. These samples were compared with a laboratory-replicated historical recipe from Renaissance Italy ( ~15th century AD) and contemporary low-strength plaster. The recipe induces the formation of gypsum platelets, which exhibit preferential orientation in the plaster bulk. In contrast, the Italian and low-strength plasters comprise a typical needle-like morphology of gypsum crystals. The platelets in expose the more hydrophilic {010} face of gypsum in a much more pronounced manner than needles. Consequently, the Iranian plaster displays enhanced wettability, enabling its direct use for water-based decoration purposes, or as a fine finishing thin layer, without the need of mixing it with a binder material. Contrary, in ypsum crystals are left to equilibrate in large excess of water, which promotes the growth of long needles at the expense of smaller crystals. Typically, such needles are several times longer than those found in a control regular plaster. For this crystal habit, the total surface of hydrophilic faces is minimized. Consequently, such plaster layers tend to repel water, which can then be used, e.g., as a substrate for oil-based panel paintings. These findings highlight the development of advanced functional materials, by tuning their microtexture, already during the premodern era.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.2208836120