Loading…
Caspase Inhibition Modulates Monocyte-Derived Macrophage Polarization in Damaged Tissues
Circulating monocytes are recruited in damaged tissues to generate macrophages that modulate disease progression. Colony-stimulating factor-1 (CSF-1) promotes the generation of monocyte-derived macrophages, which involves caspase activation. Here, we demonstrate that activated caspase-3 and caspase-...
Saved in:
Published in: | International journal of molecular sciences 2023-02, Vol.24 (4), p.4151 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c513t-5f23b5aaa7006936eb59b3233cc255b5acd1dceb3231f4e049f1fe9f527254533 |
---|---|
cites | cdi_FETCH-LOGICAL-c513t-5f23b5aaa7006936eb59b3233cc255b5acd1dceb3231f4e049f1fe9f527254533 |
container_end_page | |
container_issue | 4 |
container_start_page | 4151 |
container_title | International journal of molecular sciences |
container_volume | 24 |
creator | Solier, Stéphanie Mondini, Michele Meziani, Lydia Jacquel, Arnaud Lacout, Catherine Berghe, Tom Vanden Julé, Yvon Martinou, Jean-Claude Pierron, Gérard Rivière, Julie Deloger, Marc Dupuy, Corinne Slama-Schwok, Anny Droin, Nathalie Vandenabeele, Peter Auberger, Patrick Deutsch, Eric El-Benna, Jamel Dang, Pham My-Chan Solary, Eric |
description | Circulating monocytes are recruited in damaged tissues to generate macrophages that modulate disease progression. Colony-stimulating factor-1 (CSF-1) promotes the generation of monocyte-derived macrophages, which involves caspase activation. Here, we demonstrate that activated caspase-3 and caspase-7 are located to the vicinity of the mitochondria in CSF1-treated human monocytes. Active caspase-7 cleaves p47
at aspartate 34, which promotes the formation of the NADPH (nicotinamide adenine dinucleotide phosphate) oxidase complex NOX2 and the production of cytosolic superoxide anions. Monocyte response to CSF-1 is altered in patients with a chronic granulomatous disease, which are constitutively defective in NOX2. Both caspase-7 down-regulation and radical oxygen species scavenging decrease the migration of CSF-1-induced macrophages. Inhibition or deletion of caspases prevents the development of lung fibrosis in mice exposed to bleomycin. Altogether, a non-conventional pathway that involves caspases and activates NOX2 is involved in CSF1-driven monocyte differentiation and could be therapeutically targeted to modulate macrophage polarization in damaged tissues. |
doi_str_mv | 10.3390/ijms24044151 |
format | article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9964254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A751925159</galeid><sourcerecordid>A751925159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-5f23b5aaa7006936eb59b3233cc255b5acd1dceb3231f4e049f1fe9f527254533</originalsourceid><addsrcrecordid>eNptkk1v1DAQhi1ERUvhxhlF4gISKf5M6gvSagttpa3gUCRuluOMd71K7K2drFR-PQ7bj22FfPBo5pnXM-NB6B3BJ4xJ_MWt-0Q55pwI8gIdEU5piXFVv9yzD9HrlNYYU0aFfIUOWXXKhKiqI_R7rtNGJygu_co1bnDBF1ehHTs9QMqWD-Z2gPIMottCW1xpE8NmpZdQ_Aydju6P_pfifHGm--xui2uX0gjpDTqwukvw9u4-Rr--f7ueX5SLH-eX89miNIKwoRSWskZoretcp2QVNEI2jDJmDBUiR0xLWgOTi1gOmEtLLEgraE0FF4wdo6873c3Y9JBRP0TdqU10vY63Kminnka8W6ll2CopK54lssCnncDqWdrFbKEmH-ZYVrWstySzH-8ei-EmNzmo3iUDXac9hDEpWp9iXFdSTuiHZ-g6jNHnUWSqloJjQuUjtdQdKOdtyDWaSVTNakEkFURM1Ml_qHxa6J0JHqzL_icJn3cJ-bdSimAfGiNYTVuj9rcm4-_3Z_gA368J-wsFZ7wP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779540129</pqid></control><display><type>article</type><title>Caspase Inhibition Modulates Monocyte-Derived Macrophage Polarization in Damaged Tissues</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><creator>Solier, Stéphanie ; Mondini, Michele ; Meziani, Lydia ; Jacquel, Arnaud ; Lacout, Catherine ; Berghe, Tom Vanden ; Julé, Yvon ; Martinou, Jean-Claude ; Pierron, Gérard ; Rivière, Julie ; Deloger, Marc ; Dupuy, Corinne ; Slama-Schwok, Anny ; Droin, Nathalie ; Vandenabeele, Peter ; Auberger, Patrick ; Deutsch, Eric ; El-Benna, Jamel ; Dang, Pham My-Chan ; Solary, Eric</creator><creatorcontrib>Solier, Stéphanie ; Mondini, Michele ; Meziani, Lydia ; Jacquel, Arnaud ; Lacout, Catherine ; Berghe, Tom Vanden ; Julé, Yvon ; Martinou, Jean-Claude ; Pierron, Gérard ; Rivière, Julie ; Deloger, Marc ; Dupuy, Corinne ; Slama-Schwok, Anny ; Droin, Nathalie ; Vandenabeele, Peter ; Auberger, Patrick ; Deutsch, Eric ; El-Benna, Jamel ; Dang, Pham My-Chan ; Solary, Eric</creatorcontrib><description>Circulating monocytes are recruited in damaged tissues to generate macrophages that modulate disease progression. Colony-stimulating factor-1 (CSF-1) promotes the generation of monocyte-derived macrophages, which involves caspase activation. Here, we demonstrate that activated caspase-3 and caspase-7 are located to the vicinity of the mitochondria in CSF1-treated human monocytes. Active caspase-7 cleaves p47
at aspartate 34, which promotes the formation of the NADPH (nicotinamide adenine dinucleotide phosphate) oxidase complex NOX2 and the production of cytosolic superoxide anions. Monocyte response to CSF-1 is altered in patients with a chronic granulomatous disease, which are constitutively defective in NOX2. Both caspase-7 down-regulation and radical oxygen species scavenging decrease the migration of CSF-1-induced macrophages. Inhibition or deletion of caspases prevents the development of lung fibrosis in mice exposed to bleomycin. Altogether, a non-conventional pathway that involves caspases and activates NOX2 is involved in CSF1-driven monocyte differentiation and could be therapeutically targeted to modulate macrophage polarization in damaged tissues.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms24044151</identifier><identifier>PMID: 36835566</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Adenine ; Animals ; Anions ; Apoptosis ; Bleomycin ; Caspase 7 - metabolism ; Caspase-3 ; Caspase-7 ; Caspases - metabolism ; Chronic granulomatous disease ; Colony-stimulating factor ; CYBB protein ; Cytoplasm ; Enzymes ; Fibrosis ; Genotype & phenotype ; Humans ; Kinases ; Life Sciences ; Macrophage colony-stimulating factor ; Macrophage Colony-Stimulating Factor - metabolism ; Macrophages ; Macrophages - metabolism ; Mice ; Microscopy ; Mitochondria ; Monocytes ; Monocytes - metabolism ; NAD(P)H oxidase ; NADPH Oxidases - metabolism ; NADPH-diaphorase ; Niacinamide ; Nicotinamide ; Oxidases ; Polarization ; Proteins ; Reactive Oxygen Species - metabolism ; Scavenging ; Scientific equipment and supplies industry ; Superoxide ; Superoxide anions</subject><ispartof>International journal of molecular sciences, 2023-02, Vol.24 (4), p.4151</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-5f23b5aaa7006936eb59b3233cc255b5acd1dceb3231f4e049f1fe9f527254533</citedby><cites>FETCH-LOGICAL-c513t-5f23b5aaa7006936eb59b3233cc255b5acd1dceb3231f4e049f1fe9f527254533</cites><orcidid>0000-0003-3788-9651 ; 0000-0002-2703-9728 ; 0000-0001-5733-216X ; 0000-0001-5803-0083 ; 0000-0003-3867-4644 ; 0000-0002-8629-1341 ; 0000-0002-6352-101X ; 0000-0002-6099-5324 ; 0000-0001-5062-8048 ; 0000-0002-2481-8275</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2779540129/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2779540129?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36835566$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://u-paris.hal.science/hal-04096797$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Solier, Stéphanie</creatorcontrib><creatorcontrib>Mondini, Michele</creatorcontrib><creatorcontrib>Meziani, Lydia</creatorcontrib><creatorcontrib>Jacquel, Arnaud</creatorcontrib><creatorcontrib>Lacout, Catherine</creatorcontrib><creatorcontrib>Berghe, Tom Vanden</creatorcontrib><creatorcontrib>Julé, Yvon</creatorcontrib><creatorcontrib>Martinou, Jean-Claude</creatorcontrib><creatorcontrib>Pierron, Gérard</creatorcontrib><creatorcontrib>Rivière, Julie</creatorcontrib><creatorcontrib>Deloger, Marc</creatorcontrib><creatorcontrib>Dupuy, Corinne</creatorcontrib><creatorcontrib>Slama-Schwok, Anny</creatorcontrib><creatorcontrib>Droin, Nathalie</creatorcontrib><creatorcontrib>Vandenabeele, Peter</creatorcontrib><creatorcontrib>Auberger, Patrick</creatorcontrib><creatorcontrib>Deutsch, Eric</creatorcontrib><creatorcontrib>El-Benna, Jamel</creatorcontrib><creatorcontrib>Dang, Pham My-Chan</creatorcontrib><creatorcontrib>Solary, Eric</creatorcontrib><title>Caspase Inhibition Modulates Monocyte-Derived Macrophage Polarization in Damaged Tissues</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>Circulating monocytes are recruited in damaged tissues to generate macrophages that modulate disease progression. Colony-stimulating factor-1 (CSF-1) promotes the generation of monocyte-derived macrophages, which involves caspase activation. Here, we demonstrate that activated caspase-3 and caspase-7 are located to the vicinity of the mitochondria in CSF1-treated human monocytes. Active caspase-7 cleaves p47
at aspartate 34, which promotes the formation of the NADPH (nicotinamide adenine dinucleotide phosphate) oxidase complex NOX2 and the production of cytosolic superoxide anions. Monocyte response to CSF-1 is altered in patients with a chronic granulomatous disease, which are constitutively defective in NOX2. Both caspase-7 down-regulation and radical oxygen species scavenging decrease the migration of CSF-1-induced macrophages. Inhibition or deletion of caspases prevents the development of lung fibrosis in mice exposed to bleomycin. Altogether, a non-conventional pathway that involves caspases and activates NOX2 is involved in CSF1-driven monocyte differentiation and could be therapeutically targeted to modulate macrophage polarization in damaged tissues.</description><subject>Adenine</subject><subject>Animals</subject><subject>Anions</subject><subject>Apoptosis</subject><subject>Bleomycin</subject><subject>Caspase 7 - metabolism</subject><subject>Caspase-3</subject><subject>Caspase-7</subject><subject>Caspases - metabolism</subject><subject>Chronic granulomatous disease</subject><subject>Colony-stimulating factor</subject><subject>CYBB protein</subject><subject>Cytoplasm</subject><subject>Enzymes</subject><subject>Fibrosis</subject><subject>Genotype & phenotype</subject><subject>Humans</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>Macrophage colony-stimulating factor</subject><subject>Macrophage Colony-Stimulating Factor - metabolism</subject><subject>Macrophages</subject><subject>Macrophages - metabolism</subject><subject>Mice</subject><subject>Microscopy</subject><subject>Mitochondria</subject><subject>Monocytes</subject><subject>Monocytes - metabolism</subject><subject>NAD(P)H oxidase</subject><subject>NADPH Oxidases - metabolism</subject><subject>NADPH-diaphorase</subject><subject>Niacinamide</subject><subject>Nicotinamide</subject><subject>Oxidases</subject><subject>Polarization</subject><subject>Proteins</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Scavenging</subject><subject>Scientific equipment and supplies industry</subject><subject>Superoxide</subject><subject>Superoxide anions</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptkk1v1DAQhi1ERUvhxhlF4gISKf5M6gvSagttpa3gUCRuluOMd71K7K2drFR-PQ7bj22FfPBo5pnXM-NB6B3BJ4xJ_MWt-0Q55pwI8gIdEU5piXFVv9yzD9HrlNYYU0aFfIUOWXXKhKiqI_R7rtNGJygu_co1bnDBF1ehHTs9QMqWD-Z2gPIMottCW1xpE8NmpZdQ_Aydju6P_pfifHGm--xui2uX0gjpDTqwukvw9u4-Rr--f7ueX5SLH-eX89miNIKwoRSWskZoretcp2QVNEI2jDJmDBUiR0xLWgOTi1gOmEtLLEgraE0FF4wdo6873c3Y9JBRP0TdqU10vY63Kminnka8W6ll2CopK54lssCnncDqWdrFbKEmH-ZYVrWstySzH-8ei-EmNzmo3iUDXac9hDEpWp9iXFdSTuiHZ-g6jNHnUWSqloJjQuUjtdQdKOdtyDWaSVTNakEkFURM1Ml_qHxa6J0JHqzL_icJn3cJ-bdSimAfGiNYTVuj9rcm4-_3Z_gA368J-wsFZ7wP</recordid><startdate>20230219</startdate><enddate>20230219</enddate><creator>Solier, Stéphanie</creator><creator>Mondini, Michele</creator><creator>Meziani, Lydia</creator><creator>Jacquel, Arnaud</creator><creator>Lacout, Catherine</creator><creator>Berghe, Tom Vanden</creator><creator>Julé, Yvon</creator><creator>Martinou, Jean-Claude</creator><creator>Pierron, Gérard</creator><creator>Rivière, Julie</creator><creator>Deloger, Marc</creator><creator>Dupuy, Corinne</creator><creator>Slama-Schwok, Anny</creator><creator>Droin, Nathalie</creator><creator>Vandenabeele, Peter</creator><creator>Auberger, Patrick</creator><creator>Deutsch, Eric</creator><creator>El-Benna, Jamel</creator><creator>Dang, Pham My-Chan</creator><creator>Solary, Eric</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3788-9651</orcidid><orcidid>https://orcid.org/0000-0002-2703-9728</orcidid><orcidid>https://orcid.org/0000-0001-5733-216X</orcidid><orcidid>https://orcid.org/0000-0001-5803-0083</orcidid><orcidid>https://orcid.org/0000-0003-3867-4644</orcidid><orcidid>https://orcid.org/0000-0002-8629-1341</orcidid><orcidid>https://orcid.org/0000-0002-6352-101X</orcidid><orcidid>https://orcid.org/0000-0002-6099-5324</orcidid><orcidid>https://orcid.org/0000-0001-5062-8048</orcidid><orcidid>https://orcid.org/0000-0002-2481-8275</orcidid></search><sort><creationdate>20230219</creationdate><title>Caspase Inhibition Modulates Monocyte-Derived Macrophage Polarization in Damaged Tissues</title><author>Solier, Stéphanie ; Mondini, Michele ; Meziani, Lydia ; Jacquel, Arnaud ; Lacout, Catherine ; Berghe, Tom Vanden ; Julé, Yvon ; Martinou, Jean-Claude ; Pierron, Gérard ; Rivière, Julie ; Deloger, Marc ; Dupuy, Corinne ; Slama-Schwok, Anny ; Droin, Nathalie ; Vandenabeele, Peter ; Auberger, Patrick ; Deutsch, Eric ; El-Benna, Jamel ; Dang, Pham My-Chan ; Solary, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-5f23b5aaa7006936eb59b3233cc255b5acd1dceb3231f4e049f1fe9f527254533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adenine</topic><topic>Animals</topic><topic>Anions</topic><topic>Apoptosis</topic><topic>Bleomycin</topic><topic>Caspase 7 - metabolism</topic><topic>Caspase-3</topic><topic>Caspase-7</topic><topic>Caspases - metabolism</topic><topic>Chronic granulomatous disease</topic><topic>Colony-stimulating factor</topic><topic>CYBB protein</topic><topic>Cytoplasm</topic><topic>Enzymes</topic><topic>Fibrosis</topic><topic>Genotype & phenotype</topic><topic>Humans</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>Macrophage colony-stimulating factor</topic><topic>Macrophage Colony-Stimulating Factor - metabolism</topic><topic>Macrophages</topic><topic>Macrophages - metabolism</topic><topic>Mice</topic><topic>Microscopy</topic><topic>Mitochondria</topic><topic>Monocytes</topic><topic>Monocytes - metabolism</topic><topic>NAD(P)H oxidase</topic><topic>NADPH Oxidases - metabolism</topic><topic>NADPH-diaphorase</topic><topic>Niacinamide</topic><topic>Nicotinamide</topic><topic>Oxidases</topic><topic>Polarization</topic><topic>Proteins</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Scavenging</topic><topic>Scientific equipment and supplies industry</topic><topic>Superoxide</topic><topic>Superoxide anions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Solier, Stéphanie</creatorcontrib><creatorcontrib>Mondini, Michele</creatorcontrib><creatorcontrib>Meziani, Lydia</creatorcontrib><creatorcontrib>Jacquel, Arnaud</creatorcontrib><creatorcontrib>Lacout, Catherine</creatorcontrib><creatorcontrib>Berghe, Tom Vanden</creatorcontrib><creatorcontrib>Julé, Yvon</creatorcontrib><creatorcontrib>Martinou, Jean-Claude</creatorcontrib><creatorcontrib>Pierron, Gérard</creatorcontrib><creatorcontrib>Rivière, Julie</creatorcontrib><creatorcontrib>Deloger, Marc</creatorcontrib><creatorcontrib>Dupuy, Corinne</creatorcontrib><creatorcontrib>Slama-Schwok, Anny</creatorcontrib><creatorcontrib>Droin, Nathalie</creatorcontrib><creatorcontrib>Vandenabeele, Peter</creatorcontrib><creatorcontrib>Auberger, Patrick</creatorcontrib><creatorcontrib>Deutsch, Eric</creatorcontrib><creatorcontrib>El-Benna, Jamel</creatorcontrib><creatorcontrib>Dang, Pham My-Chan</creatorcontrib><creatorcontrib>Solary, Eric</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest research library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Solier, Stéphanie</au><au>Mondini, Michele</au><au>Meziani, Lydia</au><au>Jacquel, Arnaud</au><au>Lacout, Catherine</au><au>Berghe, Tom Vanden</au><au>Julé, Yvon</au><au>Martinou, Jean-Claude</au><au>Pierron, Gérard</au><au>Rivière, Julie</au><au>Deloger, Marc</au><au>Dupuy, Corinne</au><au>Slama-Schwok, Anny</au><au>Droin, Nathalie</au><au>Vandenabeele, Peter</au><au>Auberger, Patrick</au><au>Deutsch, Eric</au><au>El-Benna, Jamel</au><au>Dang, Pham My-Chan</au><au>Solary, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Caspase Inhibition Modulates Monocyte-Derived Macrophage Polarization in Damaged Tissues</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2023-02-19</date><risdate>2023</risdate><volume>24</volume><issue>4</issue><spage>4151</spage><pages>4151-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Circulating monocytes are recruited in damaged tissues to generate macrophages that modulate disease progression. Colony-stimulating factor-1 (CSF-1) promotes the generation of monocyte-derived macrophages, which involves caspase activation. Here, we demonstrate that activated caspase-3 and caspase-7 are located to the vicinity of the mitochondria in CSF1-treated human monocytes. Active caspase-7 cleaves p47
at aspartate 34, which promotes the formation of the NADPH (nicotinamide adenine dinucleotide phosphate) oxidase complex NOX2 and the production of cytosolic superoxide anions. Monocyte response to CSF-1 is altered in patients with a chronic granulomatous disease, which are constitutively defective in NOX2. Both caspase-7 down-regulation and radical oxygen species scavenging decrease the migration of CSF-1-induced macrophages. Inhibition or deletion of caspases prevents the development of lung fibrosis in mice exposed to bleomycin. Altogether, a non-conventional pathway that involves caspases and activates NOX2 is involved in CSF1-driven monocyte differentiation and could be therapeutically targeted to modulate macrophage polarization in damaged tissues.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36835566</pmid><doi>10.3390/ijms24044151</doi><orcidid>https://orcid.org/0000-0003-3788-9651</orcidid><orcidid>https://orcid.org/0000-0002-2703-9728</orcidid><orcidid>https://orcid.org/0000-0001-5733-216X</orcidid><orcidid>https://orcid.org/0000-0001-5803-0083</orcidid><orcidid>https://orcid.org/0000-0003-3867-4644</orcidid><orcidid>https://orcid.org/0000-0002-8629-1341</orcidid><orcidid>https://orcid.org/0000-0002-6352-101X</orcidid><orcidid>https://orcid.org/0000-0002-6099-5324</orcidid><orcidid>https://orcid.org/0000-0001-5062-8048</orcidid><orcidid>https://orcid.org/0000-0002-2481-8275</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2023-02, Vol.24 (4), p.4151 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9964254 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central |
subjects | Adenine Animals Anions Apoptosis Bleomycin Caspase 7 - metabolism Caspase-3 Caspase-7 Caspases - metabolism Chronic granulomatous disease Colony-stimulating factor CYBB protein Cytoplasm Enzymes Fibrosis Genotype & phenotype Humans Kinases Life Sciences Macrophage colony-stimulating factor Macrophage Colony-Stimulating Factor - metabolism Macrophages Macrophages - metabolism Mice Microscopy Mitochondria Monocytes Monocytes - metabolism NAD(P)H oxidase NADPH Oxidases - metabolism NADPH-diaphorase Niacinamide Nicotinamide Oxidases Polarization Proteins Reactive Oxygen Species - metabolism Scavenging Scientific equipment and supplies industry Superoxide Superoxide anions |
title | Caspase Inhibition Modulates Monocyte-Derived Macrophage Polarization in Damaged Tissues |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T12%3A25%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Caspase%20Inhibition%20Modulates%20Monocyte-Derived%20Macrophage%20Polarization%20in%20Damaged%20Tissues&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Solier,%20St%C3%A9phanie&rft.date=2023-02-19&rft.volume=24&rft.issue=4&rft.spage=4151&rft.pages=4151-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms24044151&rft_dat=%3Cgale_pubme%3EA751925159%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c513t-5f23b5aaa7006936eb59b3233cc255b5acd1dceb3231f4e049f1fe9f527254533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2779540129&rft_id=info:pmid/36835566&rft_galeid=A751925159&rfr_iscdi=true |