Loading…
Binding preference at the μ-opioid receptor underlies distinct pharmacology of cyclopropyl versus valeryl analogs of fentanyl
Illicitly manufactured fentanyl is driving the current opioid crisis, and various fentanyl analogs are appearing in recreational drug markets worldwide. To assess the potential health risks posed by fentanyl analogs, it is necessary to understand structure-activity relationships for these compounds....
Saved in:
Published in: | Neuropharmacology 2023-04, Vol.227, p.109442-109442, Article 109442 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Illicitly manufactured fentanyl is driving the current opioid crisis, and various fentanyl analogs are appearing in recreational drug markets worldwide. To assess the potential health risks posed by fentanyl analogs, it is necessary to understand structure-activity relationships for these compounds. Here we compared the pharmacology of two structurally related fentanyl analogs implicated in opioid overdose: cyclopropylfentanyl and valerylfentanyl. Cyclopropylfentanyl has a three-carbon ring attached to the carbonyl group on the fentanyl scaffold, whereas valerylfentanyl has a four-carbon chain at the same position. In vitro assays examining μ-opioid receptor (MOR) coupling to G proteins in CHO cells showed that cyclopropylfentanyl is a full agonist (EC50 = 8.6 nM, %Emax = 113%), with potency and efficacy similar to fentanyl (EC50 = 10.3 nM, %Emax = 113%). By contrast, valerylfentanyl is a partial agonist at MOR (EC50 = 179.8 nM, %Emax = 60%). Similar results were found in assays assessing MOR-mediated β-arrestin recruitment in HEK cells. In vivo studies in male CD-1 mice demonstrated that both fentanyl analogs induce naloxone-reversible antinociception and respiratory suppression, but cyclopropylfentanyl is 100-times more potent as an antinociceptive agent (ED50 = 0.04 mg/kg, s. c.) than valerylfentanyl (ED50 = 4.0 mg/kg, s. c.). Molecular simulation results revealed that the alkyl chain of valerylfentanyl cannot be well accommodated by the active state of MOR and may transition the receptor toward an inactive state, converting the fentanyl scaffold to a partial agonist. Taken together, our results suggest that cyclopropylfentanyl presents much greater risk of adverse effects when compared to valerylfentanyl. Moreover, the summed findings may provide clues to the design of therapeutic opioids with reduced adverse side effects.
•Cyclopropylfentanyl is more efficacious than valerylfentanyl at MOR in vitro.•Both analogs induce naloxone-reversible antinociception and respiratory suppression.•Bulky carbonyl modifications to fentanyl decrease the potency and efficacy at MOR.•The butyl modification prevents optimal ligand binding in the active state of MOR.•Cyclopropylfentanyl presents greater risk for adverse effects than valerylfentanyl. |
---|---|
ISSN: | 0028-3908 1873-7064 |
DOI: | 10.1016/j.neuropharm.2023.109442 |