Loading…
Effect of radiative and nonradiative energy transfer processes of light-emitting diodes combined with quantum dots for visible light communication
Though light-emitting diodes (LEDs) combined with various color conversion techniques have been widely explored for VLC (visible light communication), E-O (electro-optical) frequency responses of devices with quantum dots (QDs) embedded within the nanoholes have rarely been addressed. Here we propos...
Saved in:
Published in: | Discover nano 2023-03, Vol.18 (1), p.29-29, Article 29 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Though light-emitting diodes (LEDs) combined with various color conversion techniques have been widely explored for VLC (visible light communication), E-O (electro-optical) frequency responses of devices with quantum dots (QDs) embedded within the nanoholes have rarely been addressed. Here we propose LEDs with embedded photonic crystal (PhC) nanohole patterns and green light QDs for studying small-signal E-O frequency bandwidths and large signal on–off keying E-O responses. We observe that the E-O modulation quality of PhC LEDs with QDs is better than a conventional LED with QDs when the overall blue mixed with green light output signal is considered. However, the optical response of only QD converted green light shows a contradictory result. The slower E-O conversion response is attributed to multi-path green light generation from both radiative and nonradiative energy transfer processes for QDs coated on the PhC LEDs. |
---|---|
ISSN: | 2731-9229 1931-7573 2731-9229 1556-276X |
DOI: | 10.1186/s11671-023-03812-w |