Loading…
Towards a biomimetic gyroscope inspired by the fly's haltere using microelectromechanical systems technology
Flies use so-called halteres to sense body rotation based on Coriolis forces for supporting equilibrium reflexes. Inspired by these halteres, a biomimetic gimbal-suspended gyroscope has been developed using microelectromechanical systems (MEMS) technology. Design rules for this type of gyroscope are...
Saved in:
Published in: | Journal of the Royal Society interface 2014-10, Vol.11 (99), p.20140573 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c542t-879c86822ee77de948ecf5a8a2604f87b4b2b0562f0572f2230c5599eb4f486b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c542t-879c86822ee77de948ecf5a8a2604f87b4b2b0562f0572f2230c5599eb4f486b3 |
container_end_page | |
container_issue | 99 |
container_start_page | 20140573 |
container_title | Journal of the Royal Society interface |
container_volume | 11 |
creator | Droogendijk, H. Brookhuis, R. A. de Boer, M. J. Sanders, R. G. P. Krijnen, G. J. M. |
description | Flies use so-called halteres to sense body rotation based on Coriolis forces for supporting equilibrium reflexes. Inspired by these halteres, a biomimetic gimbal-suspended gyroscope has been developed using microelectromechanical systems (MEMS) technology. Design rules for this type of gyroscope are derived, in which the haltere-inspired MEMS gyroscope is geared towards a large measurement bandwidth and a fast response, rather than towards a high responsivity. Measurements for the biomimetic gyroscope indicate a (drive mode) resonance frequency of about 550 Hz and a damping ratio of 0.9. Further, the theoretical performance of the fly's gyroscopic system and the developed MEMS haltere-based gyroscope is assessed and the potential of this MEMS gyroscope is discussed. |
doi_str_mv | 10.1098/rsif.2014.0573 |
format | article |
fullrecord | <record><control><sourceid>proquest_royal</sourceid><recordid>TN_cdi_royalsociety_journals_10_1098_rsif_2014_0573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1552375894</sourcerecordid><originalsourceid>FETCH-LOGICAL-c542t-879c86822ee77de948ecf5a8a2604f87b4b2b0562f0572f2230c5599eb4f486b3</originalsourceid><addsrcrecordid>eNp1kUuPFCEUhYnROA_dujTsdFMtxaOgNiamo6Nmok4yPnaEom91M1JFD1Bq_Xup9NjRhSu4cO7hcj6EntRkVZNWvYjJ9StKar4iQrJ76LSWnFaiaej94161J-gspRtCmGRCPEQnVNSlqOUp8tfhp4mbhA3uXBjcANlZvJ1jSDbsAbsx7V2EDe5mnHeAez8_S3hnfIYIeEpu3OLB2RjAg80xDGB3ZnTWeJzmlGFIOJejMfiwnR-hB73xCR7frefo85vX1-u31eXHi3frV5eVFZzmSsnWqkZRCiDlBlquwPbCKEMbwnslO97RjoiG9uXPtKeUEStE20LHe66ajp2jlwff_dQNsLEw5mi83kc3mDjrYJz-92Z0O70NPzSnrETEi8HzO4MYbidIWQ8uWfDejBCmpGshKJNCtYt0dZCWDFKK0B-fqYleEOkFkV4Q6QVRaXj693BH-R8mRcAOghjmklKwDvKsb8IUx1L-37Y6dLmS-q-jq4nfdSPLrPqL4nr99eoDef_pSn9jvwGJY7Ep</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1552375894</pqid></control><display><type>article</type><title>Towards a biomimetic gyroscope inspired by the fly's haltere using microelectromechanical systems technology</title><source>PubMed Central</source><source>Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list)</source><creator>Droogendijk, H. ; Brookhuis, R. A. ; de Boer, M. J. ; Sanders, R. G. P. ; Krijnen, G. J. M.</creator><creatorcontrib>Droogendijk, H. ; Brookhuis, R. A. ; de Boer, M. J. ; Sanders, R. G. P. ; Krijnen, G. J. M.</creatorcontrib><description>Flies use so-called halteres to sense body rotation based on Coriolis forces for supporting equilibrium reflexes. Inspired by these halteres, a biomimetic gimbal-suspended gyroscope has been developed using microelectromechanical systems (MEMS) technology. Design rules for this type of gyroscope are derived, in which the haltere-inspired MEMS gyroscope is geared towards a large measurement bandwidth and a fast response, rather than towards a high responsivity. Measurements for the biomimetic gyroscope indicate a (drive mode) resonance frequency of about 550 Hz and a damping ratio of 0.9. Further, the theoretical performance of the fly's gyroscopic system and the developed MEMS haltere-based gyroscope is assessed and the potential of this MEMS gyroscope is discussed.</description><identifier>ISSN: 1742-5689</identifier><identifier>EISSN: 1742-5662</identifier><identifier>DOI: 10.1098/rsif.2014.0573</identifier><identifier>PMID: 25100317</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Animals ; Bioengineering - methods ; Biomechanical Phenomena ; Biomimetic ; Biomimetic Materials ; Diptera ; Fly ; Gyroscope ; Haltere ; Mechanotransduction, Cellular - physiology ; MEMS ; Rotation ; Wings, Animal - physiology</subject><ispartof>Journal of the Royal Society interface, 2014-10, Vol.11 (99), p.20140573</ispartof><rights>2014 The Author(s) Published by the Royal Society. All rights reserved.</rights><rights>2014 The Author(s) Published by the Royal Society. All rights reserved. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c542t-879c86822ee77de948ecf5a8a2604f87b4b2b0562f0572f2230c5599eb4f486b3</citedby><cites>FETCH-LOGICAL-c542t-879c86822ee77de948ecf5a8a2604f87b4b2b0562f0572f2230c5599eb4f486b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4233734/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4233734/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25100317$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Droogendijk, H.</creatorcontrib><creatorcontrib>Brookhuis, R. A.</creatorcontrib><creatorcontrib>de Boer, M. J.</creatorcontrib><creatorcontrib>Sanders, R. G. P.</creatorcontrib><creatorcontrib>Krijnen, G. J. M.</creatorcontrib><title>Towards a biomimetic gyroscope inspired by the fly's haltere using microelectromechanical systems technology</title><title>Journal of the Royal Society interface</title><addtitle>J. R. Soc. Interface</addtitle><addtitle>J. R. Soc. Interface</addtitle><description>Flies use so-called halteres to sense body rotation based on Coriolis forces for supporting equilibrium reflexes. Inspired by these halteres, a biomimetic gimbal-suspended gyroscope has been developed using microelectromechanical systems (MEMS) technology. Design rules for this type of gyroscope are derived, in which the haltere-inspired MEMS gyroscope is geared towards a large measurement bandwidth and a fast response, rather than towards a high responsivity. Measurements for the biomimetic gyroscope indicate a (drive mode) resonance frequency of about 550 Hz and a damping ratio of 0.9. Further, the theoretical performance of the fly's gyroscopic system and the developed MEMS haltere-based gyroscope is assessed and the potential of this MEMS gyroscope is discussed.</description><subject>Animals</subject><subject>Bioengineering - methods</subject><subject>Biomechanical Phenomena</subject><subject>Biomimetic</subject><subject>Biomimetic Materials</subject><subject>Diptera</subject><subject>Fly</subject><subject>Gyroscope</subject><subject>Haltere</subject><subject>Mechanotransduction, Cellular - physiology</subject><subject>MEMS</subject><subject>Rotation</subject><subject>Wings, Animal - physiology</subject><issn>1742-5689</issn><issn>1742-5662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kUuPFCEUhYnROA_dujTsdFMtxaOgNiamo6Nmok4yPnaEom91M1JFD1Bq_Xup9NjRhSu4cO7hcj6EntRkVZNWvYjJ9StKar4iQrJ76LSWnFaiaej94161J-gspRtCmGRCPEQnVNSlqOUp8tfhp4mbhA3uXBjcANlZvJ1jSDbsAbsx7V2EDe5mnHeAez8_S3hnfIYIeEpu3OLB2RjAg80xDGB3ZnTWeJzmlGFIOJejMfiwnR-hB73xCR7frefo85vX1-u31eXHi3frV5eVFZzmSsnWqkZRCiDlBlquwPbCKEMbwnslO97RjoiG9uXPtKeUEStE20LHe66ajp2jlwff_dQNsLEw5mi83kc3mDjrYJz-92Z0O70NPzSnrETEi8HzO4MYbidIWQ8uWfDejBCmpGshKJNCtYt0dZCWDFKK0B-fqYleEOkFkV4Q6QVRaXj693BH-R8mRcAOghjmklKwDvKsb8IUx1L-37Y6dLmS-q-jq4nfdSPLrPqL4nr99eoDef_pSn9jvwGJY7Ep</recordid><startdate>20141006</startdate><enddate>20141006</enddate><creator>Droogendijk, H.</creator><creator>Brookhuis, R. A.</creator><creator>de Boer, M. J.</creator><creator>Sanders, R. G. P.</creator><creator>Krijnen, G. J. M.</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20141006</creationdate><title>Towards a biomimetic gyroscope inspired by the fly's haltere using microelectromechanical systems technology</title><author>Droogendijk, H. ; Brookhuis, R. A. ; de Boer, M. J. ; Sanders, R. G. P. ; Krijnen, G. J. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c542t-879c86822ee77de948ecf5a8a2604f87b4b2b0562f0572f2230c5599eb4f486b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Bioengineering - methods</topic><topic>Biomechanical Phenomena</topic><topic>Biomimetic</topic><topic>Biomimetic Materials</topic><topic>Diptera</topic><topic>Fly</topic><topic>Gyroscope</topic><topic>Haltere</topic><topic>Mechanotransduction, Cellular - physiology</topic><topic>MEMS</topic><topic>Rotation</topic><topic>Wings, Animal - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Droogendijk, H.</creatorcontrib><creatorcontrib>Brookhuis, R. A.</creatorcontrib><creatorcontrib>de Boer, M. J.</creatorcontrib><creatorcontrib>Sanders, R. G. P.</creatorcontrib><creatorcontrib>Krijnen, G. J. M.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the Royal Society interface</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Droogendijk, H.</au><au>Brookhuis, R. A.</au><au>de Boer, M. J.</au><au>Sanders, R. G. P.</au><au>Krijnen, G. J. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards a biomimetic gyroscope inspired by the fly's haltere using microelectromechanical systems technology</atitle><jtitle>Journal of the Royal Society interface</jtitle><stitle>J. R. Soc. Interface</stitle><addtitle>J. R. Soc. Interface</addtitle><date>2014-10-06</date><risdate>2014</risdate><volume>11</volume><issue>99</issue><spage>20140573</spage><pages>20140573-</pages><issn>1742-5689</issn><eissn>1742-5662</eissn><abstract>Flies use so-called halteres to sense body rotation based on Coriolis forces for supporting equilibrium reflexes. Inspired by these halteres, a biomimetic gimbal-suspended gyroscope has been developed using microelectromechanical systems (MEMS) technology. Design rules for this type of gyroscope are derived, in which the haltere-inspired MEMS gyroscope is geared towards a large measurement bandwidth and a fast response, rather than towards a high responsivity. Measurements for the biomimetic gyroscope indicate a (drive mode) resonance frequency of about 550 Hz and a damping ratio of 0.9. Further, the theoretical performance of the fly's gyroscopic system and the developed MEMS haltere-based gyroscope is assessed and the potential of this MEMS gyroscope is discussed.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>25100317</pmid><doi>10.1098/rsif.2014.0573</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-5689 |
ispartof | Journal of the Royal Society interface, 2014-10, Vol.11 (99), p.20140573 |
issn | 1742-5689 1742-5662 |
language | eng |
recordid | cdi_royalsociety_journals_10_1098_rsif_2014_0573 |
source | PubMed Central; Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list) |
subjects | Animals Bioengineering - methods Biomechanical Phenomena Biomimetic Biomimetic Materials Diptera Fly Gyroscope Haltere Mechanotransduction, Cellular - physiology MEMS Rotation Wings, Animal - physiology |
title | Towards a biomimetic gyroscope inspired by the fly's haltere using microelectromechanical systems technology |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T13%3A58%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_royal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20a%20biomimetic%20gyroscope%20inspired%20by%20the%20fly's%20haltere%20using%20microelectromechanical%20systems%20technology&rft.jtitle=Journal%20of%20the%20Royal%20Society%20interface&rft.au=Droogendijk,%20H.&rft.date=2014-10-06&rft.volume=11&rft.issue=99&rft.spage=20140573&rft.pages=20140573-&rft.issn=1742-5689&rft.eissn=1742-5662&rft_id=info:doi/10.1098/rsif.2014.0573&rft_dat=%3Cproquest_royal%3E1552375894%3C/proquest_royal%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c542t-879c86822ee77de948ecf5a8a2604f87b4b2b0562f0572f2230c5599eb4f486b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1552375894&rft_id=info:pmid/25100317&rfr_iscdi=true |