Loading…
Universal recovery map for approximate Markov chains
A central question in quantum information theory is to determine how well lost information can be reconstructed. Crucially, the corresponding recovery operation should perform well without knowing the information to be reconstructed. In this work, we show that the quantum conditional mutual informat...
Saved in:
Published in: | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2016-02, Vol.472 (2186), p.20150623-20150623 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c634t-c36c81afa23de3f3514070a25725eb1a3c2b628b3490ea5436174321311396b03 |
---|---|
cites | cdi_FETCH-LOGICAL-c634t-c36c81afa23de3f3514070a25725eb1a3c2b628b3490ea5436174321311396b03 |
container_end_page | 20150623 |
container_issue | 2186 |
container_start_page | 20150623 |
container_title | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences |
container_volume | 472 |
creator | Sutter, David Fawzi, Omar Renner, Renato |
description | A central question in quantum information theory is to determine how well lost information can be reconstructed. Crucially, the corresponding recovery operation should perform well without knowing the information to be reconstructed. In this work, we show that the quantum conditional mutual information measures the performance of such recovery operations. More precisely, we prove that the conditional mutual information I(A:C|B) of a tripartite quantum state ρABC can be bounded from below by its distance to the closest recovered state RB→BC(ρAB), where the C-part is reconstructed from the B-part only and the recovery map RB→BC merely depends on ρBC. One particular application of this result implies the equivalence between two different approaches to define topological order in quantum systems. |
doi_str_mv | 10.1098/rspa.2015.0623 |
format | article |
fullrecord | <record><control><sourceid>proquest_royal</sourceid><recordid>TN_cdi_royalsociety_journals_10_1098_rspa_2015_0623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1826674189</sourcerecordid><originalsourceid>FETCH-LOGICAL-c634t-c36c81afa23de3f3514070a25725eb1a3c2b628b3490ea5436174321311396b03</originalsourceid><addsrcrecordid>eNp9kc1v1DAQxS0Eou3ClSPKEQ5ZPP6KfUFaVaVFWgQCerYc12HdZuNgJxHLX49DSkUrwcljz--9sf0QegF4DVjJNzH1Zk0w8DUWhD5Cx8AqKIli4nGuqWAlxwSO0ElK1xhjxWX1FB2RCkBKqY4Ru-z85GIybRGdDbk8FHvTF02Ihen7GH74vRlc8cHEmzAVdmd8l56hJ41pk3t-u67Q5buzr6cX5fbj-fvTzba0grKhtFRYCaYxhF452lAODFfYEF4R7mow1JJaEFlTprAznFEBFaMEKABVosZ0hd4uvv1Y792Vdd0QTav7mO8UDzoYr-93Or_T38KkmWQgsuEKvV4Mdg9kF5utns8wKMUJsAky--p2WAzfR5cGvffJurY1nQtj0iCJEBUDqTK6XlAbQ0rRNXfegPUci55j0XMseo4lC17-_ZA7_E8OGaALEMMh_2iw3g0HfR3G2OXtv21v_qf6_OXTZmIV8QSk0FhSyCrOhP7p-8UqN7VPaXT6N3Lf_uG0X1Dtu-U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826674189</pqid></control><display><type>article</type><title>Universal recovery map for approximate Markov chains</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list)</source><creator>Sutter, David ; Fawzi, Omar ; Renner, Renato</creator><creatorcontrib>Sutter, David ; Fawzi, Omar ; Renner, Renato</creatorcontrib><description>A central question in quantum information theory is to determine how well lost information can be reconstructed. Crucially, the corresponding recovery operation should perform well without knowing the information to be reconstructed. In this work, we show that the quantum conditional mutual information measures the performance of such recovery operations. More precisely, we prove that the conditional mutual information I(A:C|B) of a tripartite quantum state ρABC can be bounded from below by its distance to the closest recovered state RB→BC(ρAB), where the C-part is reconstructed from the B-part only and the recovery map RB→BC merely depends on ρBC. One particular application of this result implies the equivalence between two different approaches to define topological order in quantum systems.</description><identifier>ISSN: 1364-5021</identifier><identifier>EISSN: 1471-2946</identifier><identifier>DOI: 10.1098/rspa.2015.0623</identifier><identifier>PMID: 27118889</identifier><language>eng</language><publisher>England: The Royal Society Publishing</publisher><subject>Conditional Mutual Information ; Physics ; Quantum Markov Chains ; Quantum Physics ; Recoverability ; Strong Subadditivity</subject><ispartof>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2016-02, Vol.472 (2186), p.20150623-20150623</ispartof><rights>2016 The Authors.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2016 The Authors. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c634t-c36c81afa23de3f3514070a25725eb1a3c2b628b3490ea5436174321311396b03</citedby><cites>FETCH-LOGICAL-c634t-c36c81afa23de3f3514070a25725eb1a3c2b628b3490ea5436174321311396b03</cites><orcidid>0000-0001-8491-0359</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27118889$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01995214$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Sutter, David</creatorcontrib><creatorcontrib>Fawzi, Omar</creatorcontrib><creatorcontrib>Renner, Renato</creatorcontrib><title>Universal recovery map for approximate Markov chains</title><title>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</title><addtitle>Proc. R. Soc. A</addtitle><addtitle>Proc Math Phys Eng Sci</addtitle><description>A central question in quantum information theory is to determine how well lost information can be reconstructed. Crucially, the corresponding recovery operation should perform well without knowing the information to be reconstructed. In this work, we show that the quantum conditional mutual information measures the performance of such recovery operations. More precisely, we prove that the conditional mutual information I(A:C|B) of a tripartite quantum state ρABC can be bounded from below by its distance to the closest recovered state RB→BC(ρAB), where the C-part is reconstructed from the B-part only and the recovery map RB→BC merely depends on ρBC. One particular application of this result implies the equivalence between two different approaches to define topological order in quantum systems.</description><subject>Conditional Mutual Information</subject><subject>Physics</subject><subject>Quantum Markov Chains</subject><subject>Quantum Physics</subject><subject>Recoverability</subject><subject>Strong Subadditivity</subject><issn>1364-5021</issn><issn>1471-2946</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kc1v1DAQxS0Eou3ClSPKEQ5ZPP6KfUFaVaVFWgQCerYc12HdZuNgJxHLX49DSkUrwcljz--9sf0QegF4DVjJNzH1Zk0w8DUWhD5Cx8AqKIli4nGuqWAlxwSO0ElK1xhjxWX1FB2RCkBKqY4Ru-z85GIybRGdDbk8FHvTF02Ihen7GH74vRlc8cHEmzAVdmd8l56hJ41pk3t-u67Q5buzr6cX5fbj-fvTzba0grKhtFRYCaYxhF452lAODFfYEF4R7mow1JJaEFlTprAznFEBFaMEKABVosZ0hd4uvv1Y792Vdd0QTav7mO8UDzoYr-93Or_T38KkmWQgsuEKvV4Mdg9kF5utns8wKMUJsAky--p2WAzfR5cGvffJurY1nQtj0iCJEBUDqTK6XlAbQ0rRNXfegPUci55j0XMseo4lC17-_ZA7_E8OGaALEMMh_2iw3g0HfR3G2OXtv21v_qf6_OXTZmIV8QSk0FhSyCrOhP7p-8UqN7VPaXT6N3Lf_uG0X1Dtu-U</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Sutter, David</creator><creator>Fawzi, Omar</creator><creator>Renner, Renato</creator><general>The Royal Society Publishing</general><general>Royal Society, The</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8491-0359</orcidid></search><sort><creationdate>20160201</creationdate><title>Universal recovery map for approximate Markov chains</title><author>Sutter, David ; Fawzi, Omar ; Renner, Renato</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c634t-c36c81afa23de3f3514070a25725eb1a3c2b628b3490ea5436174321311396b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Conditional Mutual Information</topic><topic>Physics</topic><topic>Quantum Markov Chains</topic><topic>Quantum Physics</topic><topic>Recoverability</topic><topic>Strong Subadditivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sutter, David</creatorcontrib><creatorcontrib>Fawzi, Omar</creatorcontrib><creatorcontrib>Renner, Renato</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sutter, David</au><au>Fawzi, Omar</au><au>Renner, Renato</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Universal recovery map for approximate Markov chains</atitle><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle><stitle>Proc. R. Soc. A</stitle><addtitle>Proc Math Phys Eng Sci</addtitle><date>2016-02-01</date><risdate>2016</risdate><volume>472</volume><issue>2186</issue><spage>20150623</spage><epage>20150623</epage><pages>20150623-20150623</pages><issn>1364-5021</issn><eissn>1471-2946</eissn><abstract>A central question in quantum information theory is to determine how well lost information can be reconstructed. Crucially, the corresponding recovery operation should perform well without knowing the information to be reconstructed. In this work, we show that the quantum conditional mutual information measures the performance of such recovery operations. More precisely, we prove that the conditional mutual information I(A:C|B) of a tripartite quantum state ρABC can be bounded from below by its distance to the closest recovered state RB→BC(ρAB), where the C-part is reconstructed from the B-part only and the recovery map RB→BC merely depends on ρBC. One particular application of this result implies the equivalence between two different approaches to define topological order in quantum systems.</abstract><cop>England</cop><pub>The Royal Society Publishing</pub><pmid>27118889</pmid><doi>10.1098/rspa.2015.0623</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8491-0359</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-5021 |
ispartof | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2016-02, Vol.472 (2186), p.20150623-20150623 |
issn | 1364-5021 1471-2946 |
language | eng |
recordid | cdi_royalsociety_journals_10_1098_rspa_2015_0623 |
source | JSTOR Archival Journals and Primary Sources Collection; Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list) |
subjects | Conditional Mutual Information Physics Quantum Markov Chains Quantum Physics Recoverability Strong Subadditivity |
title | Universal recovery map for approximate Markov chains |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A05%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_royal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Universal%20recovery%20map%20for%20approximate%20Markov%20chains&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20A,%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Sutter,%20David&rft.date=2016-02-01&rft.volume=472&rft.issue=2186&rft.spage=20150623&rft.epage=20150623&rft.pages=20150623-20150623&rft.issn=1364-5021&rft.eissn=1471-2946&rft_id=info:doi/10.1098/rspa.2015.0623&rft_dat=%3Cproquest_royal%3E1826674189%3C/proquest_royal%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c634t-c36c81afa23de3f3514070a25725eb1a3c2b628b3490ea5436174321311396b03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1826674189&rft_id=info:pmid/27118889&rfr_iscdi=true |