Loading…

Universal recovery map for approximate Markov chains

A central question in quantum information theory is to determine how well lost information can be reconstructed. Crucially, the corresponding recovery operation should perform well without knowing the information to be reconstructed. In this work, we show that the quantum conditional mutual informat...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2016-02, Vol.472 (2186), p.20150623-20150623
Main Authors: Sutter, David, Fawzi, Omar, Renner, Renato
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c634t-c36c81afa23de3f3514070a25725eb1a3c2b628b3490ea5436174321311396b03
cites cdi_FETCH-LOGICAL-c634t-c36c81afa23de3f3514070a25725eb1a3c2b628b3490ea5436174321311396b03
container_end_page 20150623
container_issue 2186
container_start_page 20150623
container_title Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences
container_volume 472
creator Sutter, David
Fawzi, Omar
Renner, Renato
description A central question in quantum information theory is to determine how well lost information can be reconstructed. Crucially, the corresponding recovery operation should perform well without knowing the information to be reconstructed. In this work, we show that the quantum conditional mutual information measures the performance of such recovery operations. More precisely, we prove that the conditional mutual information I(A:C|B) of a tripartite quantum state ρABC can be bounded from below by its distance to the closest recovered state RB→BC(ρAB), where the C-part is reconstructed from the B-part only and the recovery map RB→BC merely depends on ρBC. One particular application of this result implies the equivalence between two different approaches to define topological order in quantum systems.
doi_str_mv 10.1098/rspa.2015.0623
format article
fullrecord <record><control><sourceid>proquest_royal</sourceid><recordid>TN_cdi_royalsociety_journals_10_1098_rspa_2015_0623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1826674189</sourcerecordid><originalsourceid>FETCH-LOGICAL-c634t-c36c81afa23de3f3514070a25725eb1a3c2b628b3490ea5436174321311396b03</originalsourceid><addsrcrecordid>eNp9kc1v1DAQxS0Eou3ClSPKEQ5ZPP6KfUFaVaVFWgQCerYc12HdZuNgJxHLX49DSkUrwcljz--9sf0QegF4DVjJNzH1Zk0w8DUWhD5Cx8AqKIli4nGuqWAlxwSO0ElK1xhjxWX1FB2RCkBKqY4Ru-z85GIybRGdDbk8FHvTF02Ihen7GH74vRlc8cHEmzAVdmd8l56hJ41pk3t-u67Q5buzr6cX5fbj-fvTzba0grKhtFRYCaYxhF452lAODFfYEF4R7mow1JJaEFlTprAznFEBFaMEKABVosZ0hd4uvv1Y792Vdd0QTav7mO8UDzoYr-93Or_T38KkmWQgsuEKvV4Mdg9kF5utns8wKMUJsAky--p2WAzfR5cGvffJurY1nQtj0iCJEBUDqTK6XlAbQ0rRNXfegPUci55j0XMseo4lC17-_ZA7_E8OGaALEMMh_2iw3g0HfR3G2OXtv21v_qf6_OXTZmIV8QSk0FhSyCrOhP7p-8UqN7VPaXT6N3Lf_uG0X1Dtu-U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826674189</pqid></control><display><type>article</type><title>Universal recovery map for approximate Markov chains</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Royal Society Publishing Jisc Collections Royal Society Journals Read &amp; Publish Transitional Agreement 2025 (reading list)</source><creator>Sutter, David ; Fawzi, Omar ; Renner, Renato</creator><creatorcontrib>Sutter, David ; Fawzi, Omar ; Renner, Renato</creatorcontrib><description>A central question in quantum information theory is to determine how well lost information can be reconstructed. Crucially, the corresponding recovery operation should perform well without knowing the information to be reconstructed. In this work, we show that the quantum conditional mutual information measures the performance of such recovery operations. More precisely, we prove that the conditional mutual information I(A:C|B) of a tripartite quantum state ρABC can be bounded from below by its distance to the closest recovered state RB→BC(ρAB), where the C-part is reconstructed from the B-part only and the recovery map RB→BC merely depends on ρBC. One particular application of this result implies the equivalence between two different approaches to define topological order in quantum systems.</description><identifier>ISSN: 1364-5021</identifier><identifier>EISSN: 1471-2946</identifier><identifier>DOI: 10.1098/rspa.2015.0623</identifier><identifier>PMID: 27118889</identifier><language>eng</language><publisher>England: The Royal Society Publishing</publisher><subject>Conditional Mutual Information ; Physics ; Quantum Markov Chains ; Quantum Physics ; Recoverability ; Strong Subadditivity</subject><ispartof>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2016-02, Vol.472 (2186), p.20150623-20150623</ispartof><rights>2016 The Authors.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2016 The Authors. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c634t-c36c81afa23de3f3514070a25725eb1a3c2b628b3490ea5436174321311396b03</citedby><cites>FETCH-LOGICAL-c634t-c36c81afa23de3f3514070a25725eb1a3c2b628b3490ea5436174321311396b03</cites><orcidid>0000-0001-8491-0359</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27118889$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01995214$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Sutter, David</creatorcontrib><creatorcontrib>Fawzi, Omar</creatorcontrib><creatorcontrib>Renner, Renato</creatorcontrib><title>Universal recovery map for approximate Markov chains</title><title>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</title><addtitle>Proc. R. Soc. A</addtitle><addtitle>Proc Math Phys Eng Sci</addtitle><description>A central question in quantum information theory is to determine how well lost information can be reconstructed. Crucially, the corresponding recovery operation should perform well without knowing the information to be reconstructed. In this work, we show that the quantum conditional mutual information measures the performance of such recovery operations. More precisely, we prove that the conditional mutual information I(A:C|B) of a tripartite quantum state ρABC can be bounded from below by its distance to the closest recovered state RB→BC(ρAB), where the C-part is reconstructed from the B-part only and the recovery map RB→BC merely depends on ρBC. One particular application of this result implies the equivalence between two different approaches to define topological order in quantum systems.</description><subject>Conditional Mutual Information</subject><subject>Physics</subject><subject>Quantum Markov Chains</subject><subject>Quantum Physics</subject><subject>Recoverability</subject><subject>Strong Subadditivity</subject><issn>1364-5021</issn><issn>1471-2946</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kc1v1DAQxS0Eou3ClSPKEQ5ZPP6KfUFaVaVFWgQCerYc12HdZuNgJxHLX49DSkUrwcljz--9sf0QegF4DVjJNzH1Zk0w8DUWhD5Cx8AqKIli4nGuqWAlxwSO0ElK1xhjxWX1FB2RCkBKqY4Ru-z85GIybRGdDbk8FHvTF02Ihen7GH74vRlc8cHEmzAVdmd8l56hJ41pk3t-u67Q5buzr6cX5fbj-fvTzba0grKhtFRYCaYxhF452lAODFfYEF4R7mow1JJaEFlTprAznFEBFaMEKABVosZ0hd4uvv1Y792Vdd0QTav7mO8UDzoYr-93Or_T38KkmWQgsuEKvV4Mdg9kF5utns8wKMUJsAky--p2WAzfR5cGvffJurY1nQtj0iCJEBUDqTK6XlAbQ0rRNXfegPUci55j0XMseo4lC17-_ZA7_E8OGaALEMMh_2iw3g0HfR3G2OXtv21v_qf6_OXTZmIV8QSk0FhSyCrOhP7p-8UqN7VPaXT6N3Lf_uG0X1Dtu-U</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Sutter, David</creator><creator>Fawzi, Omar</creator><creator>Renner, Renato</creator><general>The Royal Society Publishing</general><general>Royal Society, The</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8491-0359</orcidid></search><sort><creationdate>20160201</creationdate><title>Universal recovery map for approximate Markov chains</title><author>Sutter, David ; Fawzi, Omar ; Renner, Renato</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c634t-c36c81afa23de3f3514070a25725eb1a3c2b628b3490ea5436174321311396b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Conditional Mutual Information</topic><topic>Physics</topic><topic>Quantum Markov Chains</topic><topic>Quantum Physics</topic><topic>Recoverability</topic><topic>Strong Subadditivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sutter, David</creatorcontrib><creatorcontrib>Fawzi, Omar</creatorcontrib><creatorcontrib>Renner, Renato</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sutter, David</au><au>Fawzi, Omar</au><au>Renner, Renato</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Universal recovery map for approximate Markov chains</atitle><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle><stitle>Proc. R. Soc. A</stitle><addtitle>Proc Math Phys Eng Sci</addtitle><date>2016-02-01</date><risdate>2016</risdate><volume>472</volume><issue>2186</issue><spage>20150623</spage><epage>20150623</epage><pages>20150623-20150623</pages><issn>1364-5021</issn><eissn>1471-2946</eissn><abstract>A central question in quantum information theory is to determine how well lost information can be reconstructed. Crucially, the corresponding recovery operation should perform well without knowing the information to be reconstructed. In this work, we show that the quantum conditional mutual information measures the performance of such recovery operations. More precisely, we prove that the conditional mutual information I(A:C|B) of a tripartite quantum state ρABC can be bounded from below by its distance to the closest recovered state RB→BC(ρAB), where the C-part is reconstructed from the B-part only and the recovery map RB→BC merely depends on ρBC. One particular application of this result implies the equivalence between two different approaches to define topological order in quantum systems.</abstract><cop>England</cop><pub>The Royal Society Publishing</pub><pmid>27118889</pmid><doi>10.1098/rspa.2015.0623</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8491-0359</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1364-5021
ispartof Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2016-02, Vol.472 (2186), p.20150623-20150623
issn 1364-5021
1471-2946
language eng
recordid cdi_royalsociety_journals_10_1098_rspa_2015_0623
source JSTOR Archival Journals and Primary Sources Collection; Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list)
subjects Conditional Mutual Information
Physics
Quantum Markov Chains
Quantum Physics
Recoverability
Strong Subadditivity
title Universal recovery map for approximate Markov chains
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A05%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_royal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Universal%20recovery%20map%20for%20approximate%20Markov%20chains&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20A,%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Sutter,%20David&rft.date=2016-02-01&rft.volume=472&rft.issue=2186&rft.spage=20150623&rft.epage=20150623&rft.pages=20150623-20150623&rft.issn=1364-5021&rft.eissn=1471-2946&rft_id=info:doi/10.1098/rspa.2015.0623&rft_dat=%3Cproquest_royal%3E1826674189%3C/proquest_royal%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c634t-c36c81afa23de3f3514070a25725eb1a3c2b628b3490ea5436174321311396b03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1826674189&rft_id=info:pmid/27118889&rfr_iscdi=true