Loading…

Models for Electrical Tuning in Hair Cells

We analyse several models for the electrical properties of vertebrate hair cell membranes to assess whether they can account for the electrical resonant tuning that these cells possess. The presence of either a voltage-gated potassium current or a calcium-gated potassium current in the cell membrane...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Royal Society of London. Series B, Biological sciences Biological sciences, 1985-12, Vol.226 (1244), p.325-344
Main Authors: Ashmore, J. F., Attwell, D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c573t-2e33f9fd93bcc700d329ffd3c7aaa34157157c8a45f938ba24df8308b8b1bed23
cites cdi_FETCH-LOGICAL-c573t-2e33f9fd93bcc700d329ffd3c7aaa34157157c8a45f938ba24df8308b8b1bed23
container_end_page 344
container_issue 1244
container_start_page 325
container_title Proceedings of the Royal Society of London. Series B, Biological sciences
container_volume 226
creator Ashmore, J. F.
Attwell, D
description We analyse several models for the electrical properties of vertebrate hair cell membranes to assess whether they can account for the electrical resonant tuning that these cells possess. The presence of either a voltage-gated potassium current or a calcium-gated potassium current in the cell membrane is shown, with suitable assumptions, to make the cell behave as a simple resistance-inductance-capacitance circuit showing resonant behaviour. With plausible values for the model parameters however, the presence of a voltage-gated current alone cannot account for the high Q values of the resonance behaviour seen in hair cells. A calcium-gated current could account for the high Q values. Mechanisms that allow variation of optimal frequency between different hair cells are discussed. It is concluded that the variation may be produced by systematic changes in the number of calcium channels and calcium pumps in the cell membrane.
doi_str_mv 10.1098/rspb.1985.0098
format article
fullrecord <record><control><sourceid>jstor_royal</sourceid><recordid>TN_cdi_royalsociety_journals_10_1098_rspb_1985_0098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>36151</jstor_id><sourcerecordid>36151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c573t-2e33f9fd93bcc700d329ffd3c7aaa34157157c8a45f938ba24df8308b8b1bed23</originalsourceid><addsrcrecordid>eNp9kM1v1DAQxS1EJZaWK4eecuCElMWfa_uE6KpLkVq1hcJ15Dh2621IIjsLLH89zgattEJUihSN5vfmvWeEXhM8J1irdzH11ZxoJeY4j8_QjHBJSqoFf45mWC9oqbigL9DLlNY4I0KJGXp71dWuSYXvYnHeODvEYE1T3G3a0N4XoS0uTIjF0jVNOkFH3jTJvfr7P0ZfV-d3y4vy8vrjp-WHy9IKyYaSOsa89rVmlbUS45pR7X3NrDTGME6EzJ9VhguvmaoM5bVXDKtKVaRyNWXHaD7dtbFLKToPfQzfTdwCwTA2hbEpjE1hbJoFbyZBb1IO76NpbUh7lcw2mIiMsQmL3Tbn72xwwxbW3Sa2efz_8fSU6vOXmzOihf5B6SIQyjlgxQiWRAkJv0O_OzcCkAEIKW0c7LBDm39dTyfXdRq6uK_CFkSQvCynZUiD-7VfmvgIC8mkgG-Kwwrzs5XkDG4zTyb-Idw__AzRwUGXPPQxVbuAu2iMjo_1_knNGNd27eDa4UAIftM00Nee_QFwD8lV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Models for Electrical Tuning in Hair Cells</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Royal Society Publishing Jisc Collections Royal Society Journals Read &amp; Publish Transitional Agreement 2025 (reading list)</source><creator>Ashmore, J. F. ; Attwell, D</creator><creatorcontrib>Ashmore, J. F. ; Attwell, D</creatorcontrib><description>We analyse several models for the electrical properties of vertebrate hair cell membranes to assess whether they can account for the electrical resonant tuning that these cells possess. The presence of either a voltage-gated potassium current or a calcium-gated potassium current in the cell membrane is shown, with suitable assumptions, to make the cell behave as a simple resistance-inductance-capacitance circuit showing resonant behaviour. With plausible values for the model parameters however, the presence of a voltage-gated current alone cannot account for the high Q values of the resonance behaviour seen in hair cells. A calcium-gated current could account for the high Q values. Mechanisms that allow variation of optimal frequency between different hair cells are discussed. It is concluded that the variation may be produced by systematic changes in the number of calcium channels and calcium pumps in the cell membrane.</description><identifier>ISSN: 0962-8452</identifier><identifier>ISSN: 0080-4649</identifier><identifier>EISSN: 1471-2954</identifier><identifier>EISSN: 2053-9193</identifier><identifier>DOI: 10.1098/rspb.1985.0098</identifier><identifier>CODEN: PRLBA4</identifier><language>eng</language><publisher>London: The Royal Society</publisher><subject>Biological and medical sciences ; Calcium ; Cell membranes ; Ear and associated structures. Auditory pathways and centers. Hearing. Vocal organ. Phonation. Sound production. Echolocation ; Electric current ; Electric potential ; Frequency ranges ; Fundamental and applied biological sciences. Psychology ; Hair cells ; Membrane potential ; Potassium ; Q factors ; Steady state current ; Vertebrates: nervous system and sense organs</subject><ispartof>Proceedings of the Royal Society of London. Series B, Biological sciences, 1985-12, Vol.226 (1244), p.325-344</ispartof><rights>Copyright 1985 The Royal Society</rights><rights>Scanned images copyright © 2017, Royal Society</rights><rights>1987 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c573t-2e33f9fd93bcc700d329ffd3c7aaa34157157c8a45f938ba24df8308b8b1bed23</citedby><cites>FETCH-LOGICAL-c573t-2e33f9fd93bcc700d329ffd3c7aaa34157157c8a45f938ba24df8308b8b1bed23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/36151$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/36151$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7938015$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ashmore, J. F.</creatorcontrib><creatorcontrib>Attwell, D</creatorcontrib><title>Models for Electrical Tuning in Hair Cells</title><title>Proceedings of the Royal Society of London. Series B, Biological sciences</title><addtitle>Proc. R. Soc. Lond. B</addtitle><addtitle>Proc. R. Soc. Lond. B</addtitle><description>We analyse several models for the electrical properties of vertebrate hair cell membranes to assess whether they can account for the electrical resonant tuning that these cells possess. The presence of either a voltage-gated potassium current or a calcium-gated potassium current in the cell membrane is shown, with suitable assumptions, to make the cell behave as a simple resistance-inductance-capacitance circuit showing resonant behaviour. With plausible values for the model parameters however, the presence of a voltage-gated current alone cannot account for the high Q values of the resonance behaviour seen in hair cells. A calcium-gated current could account for the high Q values. Mechanisms that allow variation of optimal frequency between different hair cells are discussed. It is concluded that the variation may be produced by systematic changes in the number of calcium channels and calcium pumps in the cell membrane.</description><subject>Biological and medical sciences</subject><subject>Calcium</subject><subject>Cell membranes</subject><subject>Ear and associated structures. Auditory pathways and centers. Hearing. Vocal organ. Phonation. Sound production. Echolocation</subject><subject>Electric current</subject><subject>Electric potential</subject><subject>Frequency ranges</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hair cells</subject><subject>Membrane potential</subject><subject>Potassium</subject><subject>Q factors</subject><subject>Steady state current</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0962-8452</issn><issn>0080-4649</issn><issn>1471-2954</issn><issn>2053-9193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><recordid>eNp9kM1v1DAQxS1EJZaWK4eecuCElMWfa_uE6KpLkVq1hcJ15Dh2621IIjsLLH89zgattEJUihSN5vfmvWeEXhM8J1irdzH11ZxoJeY4j8_QjHBJSqoFf45mWC9oqbigL9DLlNY4I0KJGXp71dWuSYXvYnHeODvEYE1T3G3a0N4XoS0uTIjF0jVNOkFH3jTJvfr7P0ZfV-d3y4vy8vrjp-WHy9IKyYaSOsa89rVmlbUS45pR7X3NrDTGME6EzJ9VhguvmaoM5bVXDKtKVaRyNWXHaD7dtbFLKToPfQzfTdwCwTA2hbEpjE1hbJoFbyZBb1IO76NpbUh7lcw2mIiMsQmL3Tbn72xwwxbW3Sa2efz_8fSU6vOXmzOihf5B6SIQyjlgxQiWRAkJv0O_OzcCkAEIKW0c7LBDm39dTyfXdRq6uK_CFkSQvCynZUiD-7VfmvgIC8mkgG-Kwwrzs5XkDG4zTyb-Idw__AzRwUGXPPQxVbuAu2iMjo_1_knNGNd27eDa4UAIftM00Nee_QFwD8lV</recordid><startdate>19851223</startdate><enddate>19851223</enddate><creator>Ashmore, J. F.</creator><creator>Attwell, D</creator><general>The Royal Society</general><general>Royal Society of London</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19851223</creationdate><title>Models for Electrical Tuning in Hair Cells</title><author>Ashmore, J. F. ; Attwell, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c573t-2e33f9fd93bcc700d329ffd3c7aaa34157157c8a45f938ba24df8308b8b1bed23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>Biological and medical sciences</topic><topic>Calcium</topic><topic>Cell membranes</topic><topic>Ear and associated structures. Auditory pathways and centers. Hearing. Vocal organ. Phonation. Sound production. Echolocation</topic><topic>Electric current</topic><topic>Electric potential</topic><topic>Frequency ranges</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hair cells</topic><topic>Membrane potential</topic><topic>Potassium</topic><topic>Q factors</topic><topic>Steady state current</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ashmore, J. F.</creatorcontrib><creatorcontrib>Attwell, D</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Proceedings of the Royal Society of London. Series B, Biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ashmore, J. F.</au><au>Attwell, D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Models for Electrical Tuning in Hair Cells</atitle><jtitle>Proceedings of the Royal Society of London. Series B, Biological sciences</jtitle><stitle>Proc. R. Soc. Lond. B</stitle><addtitle>Proc. R. Soc. Lond. B</addtitle><date>1985-12-23</date><risdate>1985</risdate><volume>226</volume><issue>1244</issue><spage>325</spage><epage>344</epage><pages>325-344</pages><issn>0962-8452</issn><issn>0080-4649</issn><eissn>1471-2954</eissn><eissn>2053-9193</eissn><coden>PRLBA4</coden><abstract>We analyse several models for the electrical properties of vertebrate hair cell membranes to assess whether they can account for the electrical resonant tuning that these cells possess. The presence of either a voltage-gated potassium current or a calcium-gated potassium current in the cell membrane is shown, with suitable assumptions, to make the cell behave as a simple resistance-inductance-capacitance circuit showing resonant behaviour. With plausible values for the model parameters however, the presence of a voltage-gated current alone cannot account for the high Q values of the resonance behaviour seen in hair cells. A calcium-gated current could account for the high Q values. Mechanisms that allow variation of optimal frequency between different hair cells are discussed. It is concluded that the variation may be produced by systematic changes in the number of calcium channels and calcium pumps in the cell membrane.</abstract><cop>London</cop><pub>The Royal Society</pub><doi>10.1098/rspb.1985.0098</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0962-8452
ispartof Proceedings of the Royal Society of London. Series B, Biological sciences, 1985-12, Vol.226 (1244), p.325-344
issn 0962-8452
0080-4649
1471-2954
2053-9193
language eng
recordid cdi_royalsociety_journals_10_1098_rspb_1985_0098
source JSTOR Archival Journals and Primary Sources Collection; Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list)
subjects Biological and medical sciences
Calcium
Cell membranes
Ear and associated structures. Auditory pathways and centers. Hearing. Vocal organ. Phonation. Sound production. Echolocation
Electric current
Electric potential
Frequency ranges
Fundamental and applied biological sciences. Psychology
Hair cells
Membrane potential
Potassium
Q factors
Steady state current
Vertebrates: nervous system and sense organs
title Models for Electrical Tuning in Hair Cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A58%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_royal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Models%20for%20Electrical%20Tuning%20in%20Hair%20Cells&rft.jtitle=Proceedings%20of%20the%20Royal%20Society%20of%20London.%20Series%20B,%20Biological%20sciences&rft.au=Ashmore,%20J.%20F.&rft.date=1985-12-23&rft.volume=226&rft.issue=1244&rft.spage=325&rft.epage=344&rft.pages=325-344&rft.issn=0962-8452&rft.eissn=1471-2954&rft.coden=PRLBA4&rft_id=info:doi/10.1098/rspb.1985.0098&rft_dat=%3Cjstor_royal%3E36151%3C/jstor_royal%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c573t-2e33f9fd93bcc700d329ffd3c7aaa34157157c8a45f938ba24df8308b8b1bed23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=36151&rfr_iscdi=true