Loading…

Estimating evolutionary parameters when viability selection is operating

Some individuals die before a trait is measured or expressed (the invisible fraction), and some relevant traits are not measured in any individual (missing traits). This paper discusses how these concepts can be cast in terms of missing data problems from statistics. Using missing data theory, I sho...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Royal Society. B, Biological sciences Biological sciences, 2008-03, Vol.275 (1635), p.723-734
Main Author: Hadfield, Jarrod D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c721t-66386375a47678f869f473136b5e3de91e2d522afb34e091a87a3bb256ebd79f3
cites cdi_FETCH-LOGICAL-c721t-66386375a47678f869f473136b5e3de91e2d522afb34e091a87a3bb256ebd79f3
container_end_page 734
container_issue 1635
container_start_page 723
container_title Proceedings of the Royal Society. B, Biological sciences
container_volume 275
creator Hadfield, Jarrod D
description Some individuals die before a trait is measured or expressed (the invisible fraction), and some relevant traits are not measured in any individual (missing traits). This paper discusses how these concepts can be cast in terms of missing data problems from statistics. Using missing data theory, I show formally the conditions under which a valid evolutionary inference is possible when the invisible fraction and/or missing traits are ignored. These conditions are restrictive and unlikely to be met in even the most comprehensive long-term studies. When these conditions are not met, many selection and quantitative genetic parameters cannot be estimated accurately unless the missing data process is explicitly modelled. Surprisingly, this does not seem to have been attempted in evolutionary biology. In the case of the invisible fraction, viability selection and the missing data process are often intimately linked. In such cases, models used in survival analysis can be extended to provide a flexible and justified model of the missing data mechanism. Although missing traits pose a more difficult problem, important biological parameters can still be estimated without bias when appropriate techniques are used. This is in contrast to current methods which have large biases and poor precision. Generally, the quantitative genetic approach is shown to be superior to phenotypic studies of selection when invisible fractions or missing traits exist because part of the missing information can be recovered from relatives.
doi_str_mv 10.1098/rspb.2007.1013
format article
fullrecord <record><control><sourceid>jstor_royal</sourceid><recordid>TN_cdi_royalsociety_journals_10_1098_rspb_2007_1013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25249565</jstor_id><sourcerecordid>25249565</sourcerecordid><originalsourceid>FETCH-LOGICAL-c721t-66386375a47678f869f473136b5e3de91e2d522afb34e091a87a3bb256ebd79f3</originalsourceid><addsrcrecordid>eNqFUk1vEzEUXCEQLYUrN9CeuG3w98cF1EaFIioRUeBqeTfexOlmvdjelPDr8WajQIQoJ-vpzYznvXlZ9hyCCQRSvPahKycIAJ5KiB9kp5BwWCBJycPsFEiGCkEoOsmehLACAEgq6OPsBAoEoeD4NLu6DNGudbTtIjcb1_TRulb7bd5pr9cmGh_yu6Vp843VpW1s3ObBNKYaYLkNueuM37GfZo9q3QTzbP-eZV_fXX6ZXhXXn95_mJ5fFxVHMBaMYcEwp5pwxkUtmKwJxxCzkho8NxIaNKcI6brExAAJteAalyWizJRzLmt8lr0Zdbu-XJt5ZdrodaM6n6bwW-W0Vced1i7Vwm0UopIJwpLAq72Ad997E6Ja21CZptGtcX1QHCAK0_7-C0SAUknwAJyMwMq7ELypD24gUENKakhJDSmpIaVEePnnDL_h-1gSAI8A77Zpma6yJm7VyvW-TeW_ZW_vY32-mV1sEKcWMkwVEBgCRgig6qft9lKcKhtCb9QOciz_928vxt9WITp_mAFRRCRlNPWLsW9DND8Ofe1vFePpAtQ3QZSczm4-8guoZgkPR_zSLpZ31ht1NEYqOh9Gjzt3HA0e3t7LGRxXro3pFI6Iqu6bdDPzGv8COs4FWw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20559434</pqid></control><display><type>article</type><title>Estimating evolutionary parameters when viability selection is operating</title><source>PubMed Central Free</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Royal Society Publishing Jisc Collections Royal Society Journals Read &amp; Publish Transitional Agreement 2025 (reading list)</source><creator>Hadfield, Jarrod D</creator><creatorcontrib>Hadfield, Jarrod D</creatorcontrib><description>Some individuals die before a trait is measured or expressed (the invisible fraction), and some relevant traits are not measured in any individual (missing traits). This paper discusses how these concepts can be cast in terms of missing data problems from statistics. Using missing data theory, I show formally the conditions under which a valid evolutionary inference is possible when the invisible fraction and/or missing traits are ignored. These conditions are restrictive and unlikely to be met in even the most comprehensive long-term studies. When these conditions are not met, many selection and quantitative genetic parameters cannot be estimated accurately unless the missing data process is explicitly modelled. Surprisingly, this does not seem to have been attempted in evolutionary biology. In the case of the invisible fraction, viability selection and the missing data process are often intimately linked. In such cases, models used in survival analysis can be extended to provide a flexible and justified model of the missing data mechanism. Although missing traits pose a more difficult problem, important biological parameters can still be estimated without bias when appropriate techniques are used. This is in contrast to current methods which have large biases and poor precision. Generally, the quantitative genetic approach is shown to be superior to phenotypic studies of selection when invisible fractions or missing traits exist because part of the missing information can be recovered from relatives.</description><identifier>ISSN: 0962-8452</identifier><identifier>EISSN: 1471-2954</identifier><identifier>DOI: 10.1098/rspb.2007.1013</identifier><identifier>PMID: 18211873</identifier><language>eng</language><publisher>London: The Royal Society</publisher><subject>Animal models ; Animals ; Bias ; Biological Evolution ; Body Size ; Breeders Equation ; Data Interpretation, Statistical ; Evolution ; Evolutionary genetics ; Genetics, Population - methods ; Longevity ; Missing Data ; Models, Genetic ; Natural Selection ; Phenotypes ; Phenotypic traits ; Quantitative Genetics ; Quantitative traits ; Selection Bias ; Selection, Genetic ; Time Factors ; Viability</subject><ispartof>Proceedings of the Royal Society. B, Biological sciences, 2008-03, Vol.275 (1635), p.723-734</ispartof><rights>Copyright 2007/2008 The Royal Society</rights><rights>2008 The Royal Society</rights><rights>2008 The Royal Society 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c721t-66386375a47678f869f473136b5e3de91e2d522afb34e091a87a3bb256ebd79f3</citedby><cites>FETCH-LOGICAL-c721t-66386375a47678f869f473136b5e3de91e2d522afb34e091a87a3bb256ebd79f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25249565$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25249565$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18211873$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hadfield, Jarrod D</creatorcontrib><title>Estimating evolutionary parameters when viability selection is operating</title><title>Proceedings of the Royal Society. B, Biological sciences</title><addtitle>PROC R SOC B</addtitle><description>Some individuals die before a trait is measured or expressed (the invisible fraction), and some relevant traits are not measured in any individual (missing traits). This paper discusses how these concepts can be cast in terms of missing data problems from statistics. Using missing data theory, I show formally the conditions under which a valid evolutionary inference is possible when the invisible fraction and/or missing traits are ignored. These conditions are restrictive and unlikely to be met in even the most comprehensive long-term studies. When these conditions are not met, many selection and quantitative genetic parameters cannot be estimated accurately unless the missing data process is explicitly modelled. Surprisingly, this does not seem to have been attempted in evolutionary biology. In the case of the invisible fraction, viability selection and the missing data process are often intimately linked. In such cases, models used in survival analysis can be extended to provide a flexible and justified model of the missing data mechanism. Although missing traits pose a more difficult problem, important biological parameters can still be estimated without bias when appropriate techniques are used. This is in contrast to current methods which have large biases and poor precision. Generally, the quantitative genetic approach is shown to be superior to phenotypic studies of selection when invisible fractions or missing traits exist because part of the missing information can be recovered from relatives.</description><subject>Animal models</subject><subject>Animals</subject><subject>Bias</subject><subject>Biological Evolution</subject><subject>Body Size</subject><subject>Breeders Equation</subject><subject>Data Interpretation, Statistical</subject><subject>Evolution</subject><subject>Evolutionary genetics</subject><subject>Genetics, Population - methods</subject><subject>Longevity</subject><subject>Missing Data</subject><subject>Models, Genetic</subject><subject>Natural Selection</subject><subject>Phenotypes</subject><subject>Phenotypic traits</subject><subject>Quantitative Genetics</subject><subject>Quantitative traits</subject><subject>Selection Bias</subject><subject>Selection, Genetic</subject><subject>Time Factors</subject><subject>Viability</subject><issn>0962-8452</issn><issn>1471-2954</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFUk1vEzEUXCEQLYUrN9CeuG3w98cF1EaFIioRUeBqeTfexOlmvdjelPDr8WajQIQoJ-vpzYznvXlZ9hyCCQRSvPahKycIAJ5KiB9kp5BwWCBJycPsFEiGCkEoOsmehLACAEgq6OPsBAoEoeD4NLu6DNGudbTtIjcb1_TRulb7bd5pr9cmGh_yu6Vp843VpW1s3ObBNKYaYLkNueuM37GfZo9q3QTzbP-eZV_fXX6ZXhXXn95_mJ5fFxVHMBaMYcEwp5pwxkUtmKwJxxCzkho8NxIaNKcI6brExAAJteAalyWizJRzLmt8lr0Zdbu-XJt5ZdrodaM6n6bwW-W0Vced1i7Vwm0UopIJwpLAq72Ad997E6Ja21CZptGtcX1QHCAK0_7-C0SAUknwAJyMwMq7ELypD24gUENKakhJDSmpIaVEePnnDL_h-1gSAI8A77Zpma6yJm7VyvW-TeW_ZW_vY32-mV1sEKcWMkwVEBgCRgig6qft9lKcKhtCb9QOciz_928vxt9WITp_mAFRRCRlNPWLsW9DND8Ofe1vFePpAtQ3QZSczm4-8guoZgkPR_zSLpZ31ht1NEYqOh9Gjzt3HA0e3t7LGRxXro3pFI6Iqu6bdDPzGv8COs4FWw</recordid><startdate>20080322</startdate><enddate>20080322</enddate><creator>Hadfield, Jarrod D</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>C1K</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20080322</creationdate><title>Estimating evolutionary parameters when viability selection is operating</title><author>Hadfield, Jarrod D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c721t-66386375a47678f869f473136b5e3de91e2d522afb34e091a87a3bb256ebd79f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animal models</topic><topic>Animals</topic><topic>Bias</topic><topic>Biological Evolution</topic><topic>Body Size</topic><topic>Breeders Equation</topic><topic>Data Interpretation, Statistical</topic><topic>Evolution</topic><topic>Evolutionary genetics</topic><topic>Genetics, Population - methods</topic><topic>Longevity</topic><topic>Missing Data</topic><topic>Models, Genetic</topic><topic>Natural Selection</topic><topic>Phenotypes</topic><topic>Phenotypic traits</topic><topic>Quantitative Genetics</topic><topic>Quantitative traits</topic><topic>Selection Bias</topic><topic>Selection, Genetic</topic><topic>Time Factors</topic><topic>Viability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hadfield, Jarrod D</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hadfield, Jarrod D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating evolutionary parameters when viability selection is operating</atitle><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle><addtitle>PROC R SOC B</addtitle><date>2008-03-22</date><risdate>2008</risdate><volume>275</volume><issue>1635</issue><spage>723</spage><epage>734</epage><pages>723-734</pages><issn>0962-8452</issn><eissn>1471-2954</eissn><abstract>Some individuals die before a trait is measured or expressed (the invisible fraction), and some relevant traits are not measured in any individual (missing traits). This paper discusses how these concepts can be cast in terms of missing data problems from statistics. Using missing data theory, I show formally the conditions under which a valid evolutionary inference is possible when the invisible fraction and/or missing traits are ignored. These conditions are restrictive and unlikely to be met in even the most comprehensive long-term studies. When these conditions are not met, many selection and quantitative genetic parameters cannot be estimated accurately unless the missing data process is explicitly modelled. Surprisingly, this does not seem to have been attempted in evolutionary biology. In the case of the invisible fraction, viability selection and the missing data process are often intimately linked. In such cases, models used in survival analysis can be extended to provide a flexible and justified model of the missing data mechanism. Although missing traits pose a more difficult problem, important biological parameters can still be estimated without bias when appropriate techniques are used. This is in contrast to current methods which have large biases and poor precision. Generally, the quantitative genetic approach is shown to be superior to phenotypic studies of selection when invisible fractions or missing traits exist because part of the missing information can be recovered from relatives.</abstract><cop>London</cop><pub>The Royal Society</pub><pmid>18211873</pmid><doi>10.1098/rspb.2007.1013</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0962-8452
ispartof Proceedings of the Royal Society. B, Biological sciences, 2008-03, Vol.275 (1635), p.723-734
issn 0962-8452
1471-2954
language eng
recordid cdi_royalsociety_journals_10_1098_rspb_2007_1013
source PubMed Central Free; JSTOR Archival Journals and Primary Sources Collection; Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list)
subjects Animal models
Animals
Bias
Biological Evolution
Body Size
Breeders Equation
Data Interpretation, Statistical
Evolution
Evolutionary genetics
Genetics, Population - methods
Longevity
Missing Data
Models, Genetic
Natural Selection
Phenotypes
Phenotypic traits
Quantitative Genetics
Quantitative traits
Selection Bias
Selection, Genetic
Time Factors
Viability
title Estimating evolutionary parameters when viability selection is operating
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A52%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_royal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20evolutionary%20parameters%20when%20viability%20selection%20is%20operating&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20B,%20Biological%20sciences&rft.au=Hadfield,%20Jarrod%20D&rft.date=2008-03-22&rft.volume=275&rft.issue=1635&rft.spage=723&rft.epage=734&rft.pages=723-734&rft.issn=0962-8452&rft.eissn=1471-2954&rft_id=info:doi/10.1098/rspb.2007.1013&rft_dat=%3Cjstor_royal%3E25249565%3C/jstor_royal%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c721t-66386375a47678f869f473136b5e3de91e2d522afb34e091a87a3bb256ebd79f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20559434&rft_id=info:pmid/18211873&rft_jstor_id=25249565&rfr_iscdi=true