Loading…
Estimating evolutionary parameters when viability selection is operating
Some individuals die before a trait is measured or expressed (the invisible fraction), and some relevant traits are not measured in any individual (missing traits). This paper discusses how these concepts can be cast in terms of missing data problems from statistics. Using missing data theory, I sho...
Saved in:
Published in: | Proceedings of the Royal Society. B, Biological sciences Biological sciences, 2008-03, Vol.275 (1635), p.723-734 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c721t-66386375a47678f869f473136b5e3de91e2d522afb34e091a87a3bb256ebd79f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c721t-66386375a47678f869f473136b5e3de91e2d522afb34e091a87a3bb256ebd79f3 |
container_end_page | 734 |
container_issue | 1635 |
container_start_page | 723 |
container_title | Proceedings of the Royal Society. B, Biological sciences |
container_volume | 275 |
creator | Hadfield, Jarrod D |
description | Some individuals die before a trait is measured or expressed (the invisible fraction), and some relevant traits are not measured in any individual (missing traits). This paper discusses how these concepts can be cast in terms of missing data problems from statistics. Using missing data theory, I show formally the conditions under which a valid evolutionary inference is possible when the invisible fraction and/or missing traits are ignored. These conditions are restrictive and unlikely to be met in even the most comprehensive long-term studies. When these conditions are not met, many selection and quantitative genetic parameters cannot be estimated accurately unless the missing data process is explicitly modelled. Surprisingly, this does not seem to have been attempted in evolutionary biology. In the case of the invisible fraction, viability selection and the missing data process are often intimately linked. In such cases, models used in survival analysis can be extended to provide a flexible and justified model of the missing data mechanism. Although missing traits pose a more difficult problem, important biological parameters can still be estimated without bias when appropriate techniques are used. This is in contrast to current methods which have large biases and poor precision. Generally, the quantitative genetic approach is shown to be superior to phenotypic studies of selection when invisible fractions or missing traits exist because part of the missing information can be recovered from relatives. |
doi_str_mv | 10.1098/rspb.2007.1013 |
format | article |
fullrecord | <record><control><sourceid>jstor_royal</sourceid><recordid>TN_cdi_royalsociety_journals_10_1098_rspb_2007_1013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25249565</jstor_id><sourcerecordid>25249565</sourcerecordid><originalsourceid>FETCH-LOGICAL-c721t-66386375a47678f869f473136b5e3de91e2d522afb34e091a87a3bb256ebd79f3</originalsourceid><addsrcrecordid>eNqFUk1vEzEUXCEQLYUrN9CeuG3w98cF1EaFIioRUeBqeTfexOlmvdjelPDr8WajQIQoJ-vpzYznvXlZ9hyCCQRSvPahKycIAJ5KiB9kp5BwWCBJycPsFEiGCkEoOsmehLACAEgq6OPsBAoEoeD4NLu6DNGudbTtIjcb1_TRulb7bd5pr9cmGh_yu6Vp843VpW1s3ObBNKYaYLkNueuM37GfZo9q3QTzbP-eZV_fXX6ZXhXXn95_mJ5fFxVHMBaMYcEwp5pwxkUtmKwJxxCzkho8NxIaNKcI6brExAAJteAalyWizJRzLmt8lr0Zdbu-XJt5ZdrodaM6n6bwW-W0Vced1i7Vwm0UopIJwpLAq72Ad997E6Ja21CZptGtcX1QHCAK0_7-C0SAUknwAJyMwMq7ELypD24gUENKakhJDSmpIaVEePnnDL_h-1gSAI8A77Zpma6yJm7VyvW-TeW_ZW_vY32-mV1sEKcWMkwVEBgCRgig6qft9lKcKhtCb9QOciz_928vxt9WITp_mAFRRCRlNPWLsW9DND8Ofe1vFePpAtQ3QZSczm4-8guoZgkPR_zSLpZ31ht1NEYqOh9Gjzt3HA0e3t7LGRxXro3pFI6Iqu6bdDPzGv8COs4FWw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20559434</pqid></control><display><type>article</type><title>Estimating evolutionary parameters when viability selection is operating</title><source>PubMed Central Free</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list)</source><creator>Hadfield, Jarrod D</creator><creatorcontrib>Hadfield, Jarrod D</creatorcontrib><description>Some individuals die before a trait is measured or expressed (the invisible fraction), and some relevant traits are not measured in any individual (missing traits). This paper discusses how these concepts can be cast in terms of missing data problems from statistics. Using missing data theory, I show formally the conditions under which a valid evolutionary inference is possible when the invisible fraction and/or missing traits are ignored. These conditions are restrictive and unlikely to be met in even the most comprehensive long-term studies. When these conditions are not met, many selection and quantitative genetic parameters cannot be estimated accurately unless the missing data process is explicitly modelled. Surprisingly, this does not seem to have been attempted in evolutionary biology. In the case of the invisible fraction, viability selection and the missing data process are often intimately linked. In such cases, models used in survival analysis can be extended to provide a flexible and justified model of the missing data mechanism. Although missing traits pose a more difficult problem, important biological parameters can still be estimated without bias when appropriate techniques are used. This is in contrast to current methods which have large biases and poor precision. Generally, the quantitative genetic approach is shown to be superior to phenotypic studies of selection when invisible fractions or missing traits exist because part of the missing information can be recovered from relatives.</description><identifier>ISSN: 0962-8452</identifier><identifier>EISSN: 1471-2954</identifier><identifier>DOI: 10.1098/rspb.2007.1013</identifier><identifier>PMID: 18211873</identifier><language>eng</language><publisher>London: The Royal Society</publisher><subject>Animal models ; Animals ; Bias ; Biological Evolution ; Body Size ; Breeders Equation ; Data Interpretation, Statistical ; Evolution ; Evolutionary genetics ; Genetics, Population - methods ; Longevity ; Missing Data ; Models, Genetic ; Natural Selection ; Phenotypes ; Phenotypic traits ; Quantitative Genetics ; Quantitative traits ; Selection Bias ; Selection, Genetic ; Time Factors ; Viability</subject><ispartof>Proceedings of the Royal Society. B, Biological sciences, 2008-03, Vol.275 (1635), p.723-734</ispartof><rights>Copyright 2007/2008 The Royal Society</rights><rights>2008 The Royal Society</rights><rights>2008 The Royal Society 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c721t-66386375a47678f869f473136b5e3de91e2d522afb34e091a87a3bb256ebd79f3</citedby><cites>FETCH-LOGICAL-c721t-66386375a47678f869f473136b5e3de91e2d522afb34e091a87a3bb256ebd79f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25249565$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25249565$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18211873$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hadfield, Jarrod D</creatorcontrib><title>Estimating evolutionary parameters when viability selection is operating</title><title>Proceedings of the Royal Society. B, Biological sciences</title><addtitle>PROC R SOC B</addtitle><description>Some individuals die before a trait is measured or expressed (the invisible fraction), and some relevant traits are not measured in any individual (missing traits). This paper discusses how these concepts can be cast in terms of missing data problems from statistics. Using missing data theory, I show formally the conditions under which a valid evolutionary inference is possible when the invisible fraction and/or missing traits are ignored. These conditions are restrictive and unlikely to be met in even the most comprehensive long-term studies. When these conditions are not met, many selection and quantitative genetic parameters cannot be estimated accurately unless the missing data process is explicitly modelled. Surprisingly, this does not seem to have been attempted in evolutionary biology. In the case of the invisible fraction, viability selection and the missing data process are often intimately linked. In such cases, models used in survival analysis can be extended to provide a flexible and justified model of the missing data mechanism. Although missing traits pose a more difficult problem, important biological parameters can still be estimated without bias when appropriate techniques are used. This is in contrast to current methods which have large biases and poor precision. Generally, the quantitative genetic approach is shown to be superior to phenotypic studies of selection when invisible fractions or missing traits exist because part of the missing information can be recovered from relatives.</description><subject>Animal models</subject><subject>Animals</subject><subject>Bias</subject><subject>Biological Evolution</subject><subject>Body Size</subject><subject>Breeders Equation</subject><subject>Data Interpretation, Statistical</subject><subject>Evolution</subject><subject>Evolutionary genetics</subject><subject>Genetics, Population - methods</subject><subject>Longevity</subject><subject>Missing Data</subject><subject>Models, Genetic</subject><subject>Natural Selection</subject><subject>Phenotypes</subject><subject>Phenotypic traits</subject><subject>Quantitative Genetics</subject><subject>Quantitative traits</subject><subject>Selection Bias</subject><subject>Selection, Genetic</subject><subject>Time Factors</subject><subject>Viability</subject><issn>0962-8452</issn><issn>1471-2954</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFUk1vEzEUXCEQLYUrN9CeuG3w98cF1EaFIioRUeBqeTfexOlmvdjelPDr8WajQIQoJ-vpzYznvXlZ9hyCCQRSvPahKycIAJ5KiB9kp5BwWCBJycPsFEiGCkEoOsmehLACAEgq6OPsBAoEoeD4NLu6DNGudbTtIjcb1_TRulb7bd5pr9cmGh_yu6Vp843VpW1s3ObBNKYaYLkNueuM37GfZo9q3QTzbP-eZV_fXX6ZXhXXn95_mJ5fFxVHMBaMYcEwp5pwxkUtmKwJxxCzkho8NxIaNKcI6brExAAJteAalyWizJRzLmt8lr0Zdbu-XJt5ZdrodaM6n6bwW-W0Vced1i7Vwm0UopIJwpLAq72Ad997E6Ja21CZptGtcX1QHCAK0_7-C0SAUknwAJyMwMq7ELypD24gUENKakhJDSmpIaVEePnnDL_h-1gSAI8A77Zpma6yJm7VyvW-TeW_ZW_vY32-mV1sEKcWMkwVEBgCRgig6qft9lKcKhtCb9QOciz_928vxt9WITp_mAFRRCRlNPWLsW9DND8Ofe1vFePpAtQ3QZSczm4-8guoZgkPR_zSLpZ31ht1NEYqOh9Gjzt3HA0e3t7LGRxXro3pFI6Iqu6bdDPzGv8COs4FWw</recordid><startdate>20080322</startdate><enddate>20080322</enddate><creator>Hadfield, Jarrod D</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>C1K</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20080322</creationdate><title>Estimating evolutionary parameters when viability selection is operating</title><author>Hadfield, Jarrod D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c721t-66386375a47678f869f473136b5e3de91e2d522afb34e091a87a3bb256ebd79f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animal models</topic><topic>Animals</topic><topic>Bias</topic><topic>Biological Evolution</topic><topic>Body Size</topic><topic>Breeders Equation</topic><topic>Data Interpretation, Statistical</topic><topic>Evolution</topic><topic>Evolutionary genetics</topic><topic>Genetics, Population - methods</topic><topic>Longevity</topic><topic>Missing Data</topic><topic>Models, Genetic</topic><topic>Natural Selection</topic><topic>Phenotypes</topic><topic>Phenotypic traits</topic><topic>Quantitative Genetics</topic><topic>Quantitative traits</topic><topic>Selection Bias</topic><topic>Selection, Genetic</topic><topic>Time Factors</topic><topic>Viability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hadfield, Jarrod D</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hadfield, Jarrod D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating evolutionary parameters when viability selection is operating</atitle><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle><addtitle>PROC R SOC B</addtitle><date>2008-03-22</date><risdate>2008</risdate><volume>275</volume><issue>1635</issue><spage>723</spage><epage>734</epage><pages>723-734</pages><issn>0962-8452</issn><eissn>1471-2954</eissn><abstract>Some individuals die before a trait is measured or expressed (the invisible fraction), and some relevant traits are not measured in any individual (missing traits). This paper discusses how these concepts can be cast in terms of missing data problems from statistics. Using missing data theory, I show formally the conditions under which a valid evolutionary inference is possible when the invisible fraction and/or missing traits are ignored. These conditions are restrictive and unlikely to be met in even the most comprehensive long-term studies. When these conditions are not met, many selection and quantitative genetic parameters cannot be estimated accurately unless the missing data process is explicitly modelled. Surprisingly, this does not seem to have been attempted in evolutionary biology. In the case of the invisible fraction, viability selection and the missing data process are often intimately linked. In such cases, models used in survival analysis can be extended to provide a flexible and justified model of the missing data mechanism. Although missing traits pose a more difficult problem, important biological parameters can still be estimated without bias when appropriate techniques are used. This is in contrast to current methods which have large biases and poor precision. Generally, the quantitative genetic approach is shown to be superior to phenotypic studies of selection when invisible fractions or missing traits exist because part of the missing information can be recovered from relatives.</abstract><cop>London</cop><pub>The Royal Society</pub><pmid>18211873</pmid><doi>10.1098/rspb.2007.1013</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-8452 |
ispartof | Proceedings of the Royal Society. B, Biological sciences, 2008-03, Vol.275 (1635), p.723-734 |
issn | 0962-8452 1471-2954 |
language | eng |
recordid | cdi_royalsociety_journals_10_1098_rspb_2007_1013 |
source | PubMed Central Free; JSTOR Archival Journals and Primary Sources Collection; Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list) |
subjects | Animal models Animals Bias Biological Evolution Body Size Breeders Equation Data Interpretation, Statistical Evolution Evolutionary genetics Genetics, Population - methods Longevity Missing Data Models, Genetic Natural Selection Phenotypes Phenotypic traits Quantitative Genetics Quantitative traits Selection Bias Selection, Genetic Time Factors Viability |
title | Estimating evolutionary parameters when viability selection is operating |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A52%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_royal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20evolutionary%20parameters%20when%20viability%20selection%20is%20operating&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20B,%20Biological%20sciences&rft.au=Hadfield,%20Jarrod%20D&rft.date=2008-03-22&rft.volume=275&rft.issue=1635&rft.spage=723&rft.epage=734&rft.pages=723-734&rft.issn=0962-8452&rft.eissn=1471-2954&rft_id=info:doi/10.1098/rspb.2007.1013&rft_dat=%3Cjstor_royal%3E25249565%3C/jstor_royal%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c721t-66386375a47678f869f473136b5e3de91e2d522afb34e091a87a3bb256ebd79f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20559434&rft_id=info:pmid/18211873&rft_jstor_id=25249565&rfr_iscdi=true |