Loading…

Model complexity versus ensemble size: allocating resources for climate prediction

A perennial question in modern weather forecasting and climate prediction is whether to invest resources in more complex numerical models or in larger ensembles of simulations. If this question is to be addressed quantitatively, then information is needed about how changes in model complexity and en...

Full description

Saved in:
Bibliographic Details
Published in:Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2012-03, Vol.370 (1962), p.1087-1099
Main Authors: Ferro, Christopher A. T., Jupp, Tim E., Lambert, F. Hugo, Huntingford, Chris, Cox, Peter M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c570t-b279a391018d4d8811db16ed9183259c48f22aa83aa28245d4a5f949a00e9bc13
cites cdi_FETCH-LOGICAL-c570t-b279a391018d4d8811db16ed9183259c48f22aa83aa28245d4a5f949a00e9bc13
container_end_page 1099
container_issue 1962
container_start_page 1087
container_title Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences
container_volume 370
creator Ferro, Christopher A. T.
Jupp, Tim E.
Lambert, F. Hugo
Huntingford, Chris
Cox, Peter M.
description A perennial question in modern weather forecasting and climate prediction is whether to invest resources in more complex numerical models or in larger ensembles of simulations. If this question is to be addressed quantitatively, then information is needed about how changes in model complexity and ensemble size will affect predictive performance. Information about the effects of ensemble size is often available, but information about the effects of model complexity is much rarer. An illustration is provided of the sort of analysis that might be conducted for the simplified case in which model complexity is judged in terms of grid resolution and ensemble members are constructed only by perturbing their initial conditions. The effects of resolution and ensemble size on the performance of climate simulations are described with a simple mathematical model, which is then used to define an optimal allocation of computational resources for a range of hypothetical prediction problems. The optimal resolution and ensemble size both increase with available resources, but their respective rates of increase depend on the values of two parameters that can be determined from a small number of simulations. The potential for such analyses to guide future investment decisions in climate prediction is discussed.
doi_str_mv 10.1098/rsta.2011.0307
format article
fullrecord <record><control><sourceid>jstor_royal</sourceid><recordid>TN_cdi_royalsociety_journals_10_1098_rsta_2011_0307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41348433</jstor_id><sourcerecordid>41348433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c570t-b279a391018d4d8811db16ed9183259c48f22aa83aa28245d4a5f949a00e9bc13</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiMEoqVw5QbKjVMWj-0kNrdqxfJVhFQKQlwsx5lF3iZxsJ2q21-PQ8pKCAEn25pn3tE8zrLHQFZApHjuQ9QrSgBWhJH6TnYMvIaCyoreTXdW8aIk7MtR9iCEHUlYVdL72RGlVAKl_Dg7f-9a7HLj-rHDaxv3-RX6MIUch4B902Ee7A2-yHXXOaOjHb7lHoObvMGQb53PTWd7HTEfPbbWROuGh9m9re4CPro9T7JPm5cX69fF2YdXb9anZ4UpaxKLhtZSMwkERMtbIQDaBipsJQhGS2m42FKqtWBaU0F52XJdbiWXmhCUjQF2kj1bckfvvk8YouptMNh1ekA3BSUpAylJyf5PgqS0pjCTq4U03oXgcatGn_bzewVEzcLVLFzNwtUsPDU8vY2emh7bA_7LcALYAni3TzacsRj3apcMDun599jLf3Wdf7w4vWI1sZA-WhHBIK0pCFU3dlyiUlHZECZUP5Hf4_-c9mSZtgvR-cMOHBgXnM1WiqVuQ8TrQ137S1XVrC7VZ8FVJd9-Je82a7VhPwDzMcj0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919227213</pqid></control><display><type>article</type><title>Model complexity versus ensemble size: allocating resources for climate prediction</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Royal Society Publishing Jisc Collections Royal Society Journals Read &amp; Publish Transitional Agreement 2025 (reading list)</source><creator>Ferro, Christopher A. T. ; Jupp, Tim E. ; Lambert, F. Hugo ; Huntingford, Chris ; Cox, Peter M.</creator><creatorcontrib>Ferro, Christopher A. T. ; Jupp, Tim E. ; Lambert, F. Hugo ; Huntingford, Chris ; Cox, Peter M.</creatorcontrib><description>A perennial question in modern weather forecasting and climate prediction is whether to invest resources in more complex numerical models or in larger ensembles of simulations. If this question is to be addressed quantitatively, then information is needed about how changes in model complexity and ensemble size will affect predictive performance. Information about the effects of ensemble size is often available, but information about the effects of model complexity is much rarer. An illustration is provided of the sort of analysis that might be conducted for the simplified case in which model complexity is judged in terms of grid resolution and ensemble members are constructed only by perturbing their initial conditions. The effects of resolution and ensemble size on the performance of climate simulations are described with a simple mathematical model, which is then used to define an optimal allocation of computational resources for a range of hypothetical prediction problems. The optimal resolution and ensemble size both increase with available resources, but their respective rates of increase depend on the values of two parameters that can be determined from a small number of simulations. The potential for such analyses to guide future investment decisions in climate prediction is discussed.</description><identifier>ISSN: 1364-503X</identifier><identifier>EISSN: 1471-2962</identifier><identifier>DOI: 10.1098/rsta.2011.0307</identifier><identifier>PMID: 22291224</identifier><language>eng</language><publisher>England: The Royal Society Publishing</publisher><subject>Climate models ; Cost efficiency ; Forecasting models ; General Circulation Models ; Initial Condition Ensembles ; Mean-Squared Error ; Modeling ; Parametric models ; Resolution ; Simulations ; Statistical discrepancies ; Statistical properties ; Weather ; Weather Forecasting</subject><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2012-03, Vol.370 (1962), p.1087-1099</ispartof><rights>COPYRIGHT © 2012 The Royal Society</rights><rights>This journal is © 2012 The Royal Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c570t-b279a391018d4d8811db16ed9183259c48f22aa83aa28245d4a5f949a00e9bc13</citedby><cites>FETCH-LOGICAL-c570t-b279a391018d4d8811db16ed9183259c48f22aa83aa28245d4a5f949a00e9bc13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41348433$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41348433$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22291224$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ferro, Christopher A. T.</creatorcontrib><creatorcontrib>Jupp, Tim E.</creatorcontrib><creatorcontrib>Lambert, F. Hugo</creatorcontrib><creatorcontrib>Huntingford, Chris</creatorcontrib><creatorcontrib>Cox, Peter M.</creatorcontrib><title>Model complexity versus ensemble size: allocating resources for climate prediction</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</title><addtitle>Proc. R. Soc. A</addtitle><addtitle>Proc. R. Soc. A</addtitle><description>A perennial question in modern weather forecasting and climate prediction is whether to invest resources in more complex numerical models or in larger ensembles of simulations. If this question is to be addressed quantitatively, then information is needed about how changes in model complexity and ensemble size will affect predictive performance. Information about the effects of ensemble size is often available, but information about the effects of model complexity is much rarer. An illustration is provided of the sort of analysis that might be conducted for the simplified case in which model complexity is judged in terms of grid resolution and ensemble members are constructed only by perturbing their initial conditions. The effects of resolution and ensemble size on the performance of climate simulations are described with a simple mathematical model, which is then used to define an optimal allocation of computational resources for a range of hypothetical prediction problems. The optimal resolution and ensemble size both increase with available resources, but their respective rates of increase depend on the values of two parameters that can be determined from a small number of simulations. The potential for such analyses to guide future investment decisions in climate prediction is discussed.</description><subject>Climate models</subject><subject>Cost efficiency</subject><subject>Forecasting models</subject><subject>General Circulation Models</subject><subject>Initial Condition Ensembles</subject><subject>Mean-Squared Error</subject><subject>Modeling</subject><subject>Parametric models</subject><subject>Resolution</subject><subject>Simulations</subject><subject>Statistical discrepancies</subject><subject>Statistical properties</subject><subject>Weather</subject><subject>Weather Forecasting</subject><issn>1364-503X</issn><issn>1471-2962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhiMEoqVw5QbKjVMWj-0kNrdqxfJVhFQKQlwsx5lF3iZxsJ2q21-PQ8pKCAEn25pn3tE8zrLHQFZApHjuQ9QrSgBWhJH6TnYMvIaCyoreTXdW8aIk7MtR9iCEHUlYVdL72RGlVAKl_Dg7f-9a7HLj-rHDaxv3-RX6MIUch4B902Ee7A2-yHXXOaOjHb7lHoObvMGQb53PTWd7HTEfPbbWROuGh9m9re4CPro9T7JPm5cX69fF2YdXb9anZ4UpaxKLhtZSMwkERMtbIQDaBipsJQhGS2m42FKqtWBaU0F52XJdbiWXmhCUjQF2kj1bckfvvk8YouptMNh1ekA3BSUpAylJyf5PgqS0pjCTq4U03oXgcatGn_bzewVEzcLVLFzNwtUsPDU8vY2emh7bA_7LcALYAni3TzacsRj3apcMDun599jLf3Wdf7w4vWI1sZA-WhHBIK0pCFU3dlyiUlHZECZUP5Hf4_-c9mSZtgvR-cMOHBgXnM1WiqVuQ8TrQ137S1XVrC7VZ8FVJd9-Je82a7VhPwDzMcj0</recordid><startdate>20120313</startdate><enddate>20120313</enddate><creator>Ferro, Christopher A. T.</creator><creator>Jupp, Tim E.</creator><creator>Lambert, F. Hugo</creator><creator>Huntingford, Chris</creator><creator>Cox, Peter M.</creator><general>The Royal Society Publishing</general><general>The Royal Society</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20120313</creationdate><title>Model complexity versus ensemble size: allocating resources for climate prediction</title><author>Ferro, Christopher A. T. ; Jupp, Tim E. ; Lambert, F. Hugo ; Huntingford, Chris ; Cox, Peter M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c570t-b279a391018d4d8811db16ed9183259c48f22aa83aa28245d4a5f949a00e9bc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Climate models</topic><topic>Cost efficiency</topic><topic>Forecasting models</topic><topic>General Circulation Models</topic><topic>Initial Condition Ensembles</topic><topic>Mean-Squared Error</topic><topic>Modeling</topic><topic>Parametric models</topic><topic>Resolution</topic><topic>Simulations</topic><topic>Statistical discrepancies</topic><topic>Statistical properties</topic><topic>Weather</topic><topic>Weather Forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferro, Christopher A. T.</creatorcontrib><creatorcontrib>Jupp, Tim E.</creatorcontrib><creatorcontrib>Lambert, F. Hugo</creatorcontrib><creatorcontrib>Huntingford, Chris</creatorcontrib><creatorcontrib>Cox, Peter M.</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferro, Christopher A. T.</au><au>Jupp, Tim E.</au><au>Lambert, F. Hugo</au><au>Huntingford, Chris</au><au>Cox, Peter M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model complexity versus ensemble size: allocating resources for climate prediction</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle><stitle>Proc. R. Soc. A</stitle><addtitle>Proc. R. Soc. A</addtitle><date>2012-03-13</date><risdate>2012</risdate><volume>370</volume><issue>1962</issue><spage>1087</spage><epage>1099</epage><pages>1087-1099</pages><issn>1364-503X</issn><eissn>1471-2962</eissn><abstract>A perennial question in modern weather forecasting and climate prediction is whether to invest resources in more complex numerical models or in larger ensembles of simulations. If this question is to be addressed quantitatively, then information is needed about how changes in model complexity and ensemble size will affect predictive performance. Information about the effects of ensemble size is often available, but information about the effects of model complexity is much rarer. An illustration is provided of the sort of analysis that might be conducted for the simplified case in which model complexity is judged in terms of grid resolution and ensemble members are constructed only by perturbing their initial conditions. The effects of resolution and ensemble size on the performance of climate simulations are described with a simple mathematical model, which is then used to define an optimal allocation of computational resources for a range of hypothetical prediction problems. The optimal resolution and ensemble size both increase with available resources, but their respective rates of increase depend on the values of two parameters that can be determined from a small number of simulations. The potential for such analyses to guide future investment decisions in climate prediction is discussed.</abstract><cop>England</cop><pub>The Royal Society Publishing</pub><pmid>22291224</pmid><doi>10.1098/rsta.2011.0307</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1364-503X
ispartof Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2012-03, Vol.370 (1962), p.1087-1099
issn 1364-503X
1471-2962
language eng
recordid cdi_royalsociety_journals_10_1098_rsta_2011_0307
source JSTOR Archival Journals and Primary Sources Collection; Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list)
subjects Climate models
Cost efficiency
Forecasting models
General Circulation Models
Initial Condition Ensembles
Mean-Squared Error
Modeling
Parametric models
Resolution
Simulations
Statistical discrepancies
Statistical properties
Weather
Weather Forecasting
title Model complexity versus ensemble size: allocating resources for climate prediction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A20%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_royal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20complexity%20versus%20ensemble%20size:%20allocating%20resources%20for%20climate%20prediction&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Ferro,%20Christopher%20A.%20T.&rft.date=2012-03-13&rft.volume=370&rft.issue=1962&rft.spage=1087&rft.epage=1099&rft.pages=1087-1099&rft.issn=1364-503X&rft.eissn=1471-2962&rft_id=info:doi/10.1098/rsta.2011.0307&rft_dat=%3Cjstor_royal%3E41348433%3C/jstor_royal%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c570t-b279a391018d4d8811db16ed9183259c48f22aa83aa28245d4a5f949a00e9bc13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=919227213&rft_id=info:pmid/22291224&rft_jstor_id=41348433&rfr_iscdi=true