Loading…
Model complexity versus ensemble size: allocating resources for climate prediction
A perennial question in modern weather forecasting and climate prediction is whether to invest resources in more complex numerical models or in larger ensembles of simulations. If this question is to be addressed quantitatively, then information is needed about how changes in model complexity and en...
Saved in:
Published in: | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2012-03, Vol.370 (1962), p.1087-1099 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c570t-b279a391018d4d8811db16ed9183259c48f22aa83aa28245d4a5f949a00e9bc13 |
---|---|
cites | cdi_FETCH-LOGICAL-c570t-b279a391018d4d8811db16ed9183259c48f22aa83aa28245d4a5f949a00e9bc13 |
container_end_page | 1099 |
container_issue | 1962 |
container_start_page | 1087 |
container_title | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences |
container_volume | 370 |
creator | Ferro, Christopher A. T. Jupp, Tim E. Lambert, F. Hugo Huntingford, Chris Cox, Peter M. |
description | A perennial question in modern weather forecasting and climate prediction is whether to invest resources in more complex numerical models or in larger ensembles of simulations. If this question is to be addressed quantitatively, then information is needed about how changes in model complexity and ensemble size will affect predictive performance. Information about the effects of ensemble size is often available, but information about the effects of model complexity is much rarer. An illustration is provided of the sort of analysis that might be conducted for the simplified case in which model complexity is judged in terms of grid resolution and ensemble members are constructed only by perturbing their initial conditions. The effects of resolution and ensemble size on the performance of climate simulations are described with a simple mathematical model, which is then used to define an optimal allocation of computational resources for a range of hypothetical prediction problems. The optimal resolution and ensemble size both increase with available resources, but their respective rates of increase depend on the values of two parameters that can be determined from a small number of simulations. The potential for such analyses to guide future investment decisions in climate prediction is discussed. |
doi_str_mv | 10.1098/rsta.2011.0307 |
format | article |
fullrecord | <record><control><sourceid>jstor_royal</sourceid><recordid>TN_cdi_royalsociety_journals_10_1098_rsta_2011_0307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41348433</jstor_id><sourcerecordid>41348433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c570t-b279a391018d4d8811db16ed9183259c48f22aa83aa28245d4a5f949a00e9bc13</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiMEoqVw5QbKjVMWj-0kNrdqxfJVhFQKQlwsx5lF3iZxsJ2q21-PQ8pKCAEn25pn3tE8zrLHQFZApHjuQ9QrSgBWhJH6TnYMvIaCyoreTXdW8aIk7MtR9iCEHUlYVdL72RGlVAKl_Dg7f-9a7HLj-rHDaxv3-RX6MIUch4B902Ee7A2-yHXXOaOjHb7lHoObvMGQb53PTWd7HTEfPbbWROuGh9m9re4CPro9T7JPm5cX69fF2YdXb9anZ4UpaxKLhtZSMwkERMtbIQDaBipsJQhGS2m42FKqtWBaU0F52XJdbiWXmhCUjQF2kj1bckfvvk8YouptMNh1ekA3BSUpAylJyf5PgqS0pjCTq4U03oXgcatGn_bzewVEzcLVLFzNwtUsPDU8vY2emh7bA_7LcALYAni3TzacsRj3apcMDun599jLf3Wdf7w4vWI1sZA-WhHBIK0pCFU3dlyiUlHZECZUP5Hf4_-c9mSZtgvR-cMOHBgXnM1WiqVuQ8TrQ137S1XVrC7VZ8FVJd9-Je82a7VhPwDzMcj0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919227213</pqid></control><display><type>article</type><title>Model complexity versus ensemble size: allocating resources for climate prediction</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list)</source><creator>Ferro, Christopher A. T. ; Jupp, Tim E. ; Lambert, F. Hugo ; Huntingford, Chris ; Cox, Peter M.</creator><creatorcontrib>Ferro, Christopher A. T. ; Jupp, Tim E. ; Lambert, F. Hugo ; Huntingford, Chris ; Cox, Peter M.</creatorcontrib><description>A perennial question in modern weather forecasting and climate prediction is whether to invest resources in more complex numerical models or in larger ensembles of simulations. If this question is to be addressed quantitatively, then information is needed about how changes in model complexity and ensemble size will affect predictive performance. Information about the effects of ensemble size is often available, but information about the effects of model complexity is much rarer. An illustration is provided of the sort of analysis that might be conducted for the simplified case in which model complexity is judged in terms of grid resolution and ensemble members are constructed only by perturbing their initial conditions. The effects of resolution and ensemble size on the performance of climate simulations are described with a simple mathematical model, which is then used to define an optimal allocation of computational resources for a range of hypothetical prediction problems. The optimal resolution and ensemble size both increase with available resources, but their respective rates of increase depend on the values of two parameters that can be determined from a small number of simulations. The potential for such analyses to guide future investment decisions in climate prediction is discussed.</description><identifier>ISSN: 1364-503X</identifier><identifier>EISSN: 1471-2962</identifier><identifier>DOI: 10.1098/rsta.2011.0307</identifier><identifier>PMID: 22291224</identifier><language>eng</language><publisher>England: The Royal Society Publishing</publisher><subject>Climate models ; Cost efficiency ; Forecasting models ; General Circulation Models ; Initial Condition Ensembles ; Mean-Squared Error ; Modeling ; Parametric models ; Resolution ; Simulations ; Statistical discrepancies ; Statistical properties ; Weather ; Weather Forecasting</subject><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2012-03, Vol.370 (1962), p.1087-1099</ispartof><rights>COPYRIGHT © 2012 The Royal Society</rights><rights>This journal is © 2012 The Royal Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c570t-b279a391018d4d8811db16ed9183259c48f22aa83aa28245d4a5f949a00e9bc13</citedby><cites>FETCH-LOGICAL-c570t-b279a391018d4d8811db16ed9183259c48f22aa83aa28245d4a5f949a00e9bc13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41348433$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41348433$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22291224$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ferro, Christopher A. T.</creatorcontrib><creatorcontrib>Jupp, Tim E.</creatorcontrib><creatorcontrib>Lambert, F. Hugo</creatorcontrib><creatorcontrib>Huntingford, Chris</creatorcontrib><creatorcontrib>Cox, Peter M.</creatorcontrib><title>Model complexity versus ensemble size: allocating resources for climate prediction</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</title><addtitle>Proc. R. Soc. A</addtitle><addtitle>Proc. R. Soc. A</addtitle><description>A perennial question in modern weather forecasting and climate prediction is whether to invest resources in more complex numerical models or in larger ensembles of simulations. If this question is to be addressed quantitatively, then information is needed about how changes in model complexity and ensemble size will affect predictive performance. Information about the effects of ensemble size is often available, but information about the effects of model complexity is much rarer. An illustration is provided of the sort of analysis that might be conducted for the simplified case in which model complexity is judged in terms of grid resolution and ensemble members are constructed only by perturbing their initial conditions. The effects of resolution and ensemble size on the performance of climate simulations are described with a simple mathematical model, which is then used to define an optimal allocation of computational resources for a range of hypothetical prediction problems. The optimal resolution and ensemble size both increase with available resources, but their respective rates of increase depend on the values of two parameters that can be determined from a small number of simulations. The potential for such analyses to guide future investment decisions in climate prediction is discussed.</description><subject>Climate models</subject><subject>Cost efficiency</subject><subject>Forecasting models</subject><subject>General Circulation Models</subject><subject>Initial Condition Ensembles</subject><subject>Mean-Squared Error</subject><subject>Modeling</subject><subject>Parametric models</subject><subject>Resolution</subject><subject>Simulations</subject><subject>Statistical discrepancies</subject><subject>Statistical properties</subject><subject>Weather</subject><subject>Weather Forecasting</subject><issn>1364-503X</issn><issn>1471-2962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhiMEoqVw5QbKjVMWj-0kNrdqxfJVhFQKQlwsx5lF3iZxsJ2q21-PQ8pKCAEn25pn3tE8zrLHQFZApHjuQ9QrSgBWhJH6TnYMvIaCyoreTXdW8aIk7MtR9iCEHUlYVdL72RGlVAKl_Dg7f-9a7HLj-rHDaxv3-RX6MIUch4B902Ee7A2-yHXXOaOjHb7lHoObvMGQb53PTWd7HTEfPbbWROuGh9m9re4CPro9T7JPm5cX69fF2YdXb9anZ4UpaxKLhtZSMwkERMtbIQDaBipsJQhGS2m42FKqtWBaU0F52XJdbiWXmhCUjQF2kj1bckfvvk8YouptMNh1ekA3BSUpAylJyf5PgqS0pjCTq4U03oXgcatGn_bzewVEzcLVLFzNwtUsPDU8vY2emh7bA_7LcALYAni3TzacsRj3apcMDun599jLf3Wdf7w4vWI1sZA-WhHBIK0pCFU3dlyiUlHZECZUP5Hf4_-c9mSZtgvR-cMOHBgXnM1WiqVuQ8TrQ137S1XVrC7VZ8FVJd9-Je82a7VhPwDzMcj0</recordid><startdate>20120313</startdate><enddate>20120313</enddate><creator>Ferro, Christopher A. T.</creator><creator>Jupp, Tim E.</creator><creator>Lambert, F. Hugo</creator><creator>Huntingford, Chris</creator><creator>Cox, Peter M.</creator><general>The Royal Society Publishing</general><general>The Royal Society</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20120313</creationdate><title>Model complexity versus ensemble size: allocating resources for climate prediction</title><author>Ferro, Christopher A. T. ; Jupp, Tim E. ; Lambert, F. Hugo ; Huntingford, Chris ; Cox, Peter M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c570t-b279a391018d4d8811db16ed9183259c48f22aa83aa28245d4a5f949a00e9bc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Climate models</topic><topic>Cost efficiency</topic><topic>Forecasting models</topic><topic>General Circulation Models</topic><topic>Initial Condition Ensembles</topic><topic>Mean-Squared Error</topic><topic>Modeling</topic><topic>Parametric models</topic><topic>Resolution</topic><topic>Simulations</topic><topic>Statistical discrepancies</topic><topic>Statistical properties</topic><topic>Weather</topic><topic>Weather Forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferro, Christopher A. T.</creatorcontrib><creatorcontrib>Jupp, Tim E.</creatorcontrib><creatorcontrib>Lambert, F. Hugo</creatorcontrib><creatorcontrib>Huntingford, Chris</creatorcontrib><creatorcontrib>Cox, Peter M.</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferro, Christopher A. T.</au><au>Jupp, Tim E.</au><au>Lambert, F. Hugo</au><au>Huntingford, Chris</au><au>Cox, Peter M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model complexity versus ensemble size: allocating resources for climate prediction</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle><stitle>Proc. R. Soc. A</stitle><addtitle>Proc. R. Soc. A</addtitle><date>2012-03-13</date><risdate>2012</risdate><volume>370</volume><issue>1962</issue><spage>1087</spage><epage>1099</epage><pages>1087-1099</pages><issn>1364-503X</issn><eissn>1471-2962</eissn><abstract>A perennial question in modern weather forecasting and climate prediction is whether to invest resources in more complex numerical models or in larger ensembles of simulations. If this question is to be addressed quantitatively, then information is needed about how changes in model complexity and ensemble size will affect predictive performance. Information about the effects of ensemble size is often available, but information about the effects of model complexity is much rarer. An illustration is provided of the sort of analysis that might be conducted for the simplified case in which model complexity is judged in terms of grid resolution and ensemble members are constructed only by perturbing their initial conditions. The effects of resolution and ensemble size on the performance of climate simulations are described with a simple mathematical model, which is then used to define an optimal allocation of computational resources for a range of hypothetical prediction problems. The optimal resolution and ensemble size both increase with available resources, but their respective rates of increase depend on the values of two parameters that can be determined from a small number of simulations. The potential for such analyses to guide future investment decisions in climate prediction is discussed.</abstract><cop>England</cop><pub>The Royal Society Publishing</pub><pmid>22291224</pmid><doi>10.1098/rsta.2011.0307</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-503X |
ispartof | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2012-03, Vol.370 (1962), p.1087-1099 |
issn | 1364-503X 1471-2962 |
language | eng |
recordid | cdi_royalsociety_journals_10_1098_rsta_2011_0307 |
source | JSTOR Archival Journals and Primary Sources Collection; Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list) |
subjects | Climate models Cost efficiency Forecasting models General Circulation Models Initial Condition Ensembles Mean-Squared Error Modeling Parametric models Resolution Simulations Statistical discrepancies Statistical properties Weather Weather Forecasting |
title | Model complexity versus ensemble size: allocating resources for climate prediction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A20%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_royal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20complexity%20versus%20ensemble%20size:%20allocating%20resources%20for%20climate%20prediction&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Ferro,%20Christopher%20A.%20T.&rft.date=2012-03-13&rft.volume=370&rft.issue=1962&rft.spage=1087&rft.epage=1099&rft.pages=1087-1099&rft.issn=1364-503X&rft.eissn=1471-2962&rft_id=info:doi/10.1098/rsta.2011.0307&rft_dat=%3Cjstor_royal%3E41348433%3C/jstor_royal%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c570t-b279a391018d4d8811db16ed9183259c48f22aa83aa28245d4a5f949a00e9bc13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=919227213&rft_id=info:pmid/22291224&rft_jstor_id=41348433&rfr_iscdi=true |