Loading…

Stardust silicate nucleation kick-started by SiO+TiO2

Dust particles are quintessential for the chemical evolution of the Universe. Dust nucleates in stellar outflows of dying stars and subsequently travels through the interstellar medium, continuously evolving via energetic processing, collisions and condensation. Finally, dust particles are incorpora...

Full description

Saved in:
Bibliographic Details
Published in:Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2013-07, Vol.371 (1994)
Main Authors: Goumans, T. P. M., Bromley, Stefan T.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1994
container_start_page
container_title Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences
container_volume 371
creator Goumans, T. P. M.
Bromley, Stefan T.
description Dust particles are quintessential for the chemical evolution of the Universe. Dust nucleates in stellar outflows of dying stars and subsequently travels through the interstellar medium, continuously evolving via energetic processing, collisions and condensation. Finally, dust particles are incorporated in the next-generation star or its surrounding planetary system. In oxygen-rich stellar outflows, silicates are observed in the condensation zone (1200-1000 K), but, in spite of several decades of experimental and theoretical study, the stardust nucleation process remains poorly understood. We have previously shown that under these conditions ternary Mg-Si-O clusters may start forming at high enough rates from SiO, Mg and H2O through heteromolecular association processes. In this reaction scheme, none of the possible initial association reactions was thermodynamically favourable owing to the large entropy loss at these temperatures. Here, we follow a previous idea that the incorporation of TiO2 could help to initiate stardust nucleation. In contrast to these studies, we find that there is no need for TiO2 cluster seeds-instead, one molecule of TiO2 is sufficient to kick-start the subsequent nucleation of a silicate dust particle.
doi_str_mv 10.1098/rsta.2011.0580
format article
fullrecord <record><control><sourceid>istex_royal</sourceid><recordid>TN_cdi_royalsociety_journals_10_1098_rsta_2011_0580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_V84_Z0LM1VCM_Z</sourcerecordid><originalsourceid>FETCH-LOGICAL-i403t-3cb29ebe59f72c62e8af5ad1f98a236bdd1c801dad0f4e5515fecaa0996934c33</originalsourceid><addsrcrecordid>eNp9j81Lw0AQxRdRsFavnnOX1P1MssdS_IKUgq1Fehk2mw1sU5uyuxHjX29ivYjgaWaY936Ph9A1wROCZXbrfFATigmZYJHhEzQiPCUxlQk97XeW8Fhg9nqOLrzf4l6WCDpCYhmUK1sfIm93Vqtgon2rd0YF2-yj2uo67rEumDIqumhpFzcru6CX6KxSO2-ufuYYvdzfrWaPcb54eJpN89hyzELMdEGlKYyQVUp1Qk2mKqFKUslMUZYUZUl0hkmpSlxxIwQRldFKYSkTybhmbIzYkeuars9ptDWhg23Tun1_AsEwNIehOQzNYWjeu-r_XM_L1fSdpcQSKTngjBHMBeMCPu3hiOqfYL1vDXxLfuP_psXHNOuD-YCDs2_KdaBcDUnKUgHrjMMG53Oyns1hw74ANlV_gQ</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stardust silicate nucleation kick-started by SiO+TiO2</title><source>JSTOR</source><source>Royal Society Publishing Jisc Collections Royal Society Journals Read &amp; Publish Transitional Agreement 2025 (reading list)</source><creator>Goumans, T. P. M. ; Bromley, Stefan T.</creator><creatorcontrib>Goumans, T. P. M. ; Bromley, Stefan T.</creatorcontrib><description>Dust particles are quintessential for the chemical evolution of the Universe. Dust nucleates in stellar outflows of dying stars and subsequently travels through the interstellar medium, continuously evolving via energetic processing, collisions and condensation. Finally, dust particles are incorporated in the next-generation star or its surrounding planetary system. In oxygen-rich stellar outflows, silicates are observed in the condensation zone (1200-1000 K), but, in spite of several decades of experimental and theoretical study, the stardust nucleation process remains poorly understood. We have previously shown that under these conditions ternary Mg-Si-O clusters may start forming at high enough rates from SiO, Mg and H2O through heteromolecular association processes. In this reaction scheme, none of the possible initial association reactions was thermodynamically favourable owing to the large entropy loss at these temperatures. Here, we follow a previous idea that the incorporation of TiO2 could help to initiate stardust nucleation. In contrast to these studies, we find that there is no need for TiO2 cluster seeds-instead, one molecule of TiO2 is sufficient to kick-start the subsequent nucleation of a silicate dust particle.</description><identifier>ISSN: 1364-503X</identifier><identifier>EISSN: 1471-2962</identifier><identifier>DOI: 10.1098/rsta.2011.0580</identifier><language>eng</language><publisher>The Royal Society Publishing</publisher><subject>Astrochemistry ; Nucleation ; Silicates ; Stardust</subject><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2013-07, Vol.371 (1994)</ispartof><rights>2013 The Author(s) Published by the Royal Society. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Goumans, T. P. M.</creatorcontrib><creatorcontrib>Bromley, Stefan T.</creatorcontrib><title>Stardust silicate nucleation kick-started by SiO+TiO2</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</title><addtitle>Proc. R. Soc. A</addtitle><addtitle>Proc. R. Soc. A</addtitle><description>Dust particles are quintessential for the chemical evolution of the Universe. Dust nucleates in stellar outflows of dying stars and subsequently travels through the interstellar medium, continuously evolving via energetic processing, collisions and condensation. Finally, dust particles are incorporated in the next-generation star or its surrounding planetary system. In oxygen-rich stellar outflows, silicates are observed in the condensation zone (1200-1000 K), but, in spite of several decades of experimental and theoretical study, the stardust nucleation process remains poorly understood. We have previously shown that under these conditions ternary Mg-Si-O clusters may start forming at high enough rates from SiO, Mg and H2O through heteromolecular association processes. In this reaction scheme, none of the possible initial association reactions was thermodynamically favourable owing to the large entropy loss at these temperatures. Here, we follow a previous idea that the incorporation of TiO2 could help to initiate stardust nucleation. In contrast to these studies, we find that there is no need for TiO2 cluster seeds-instead, one molecule of TiO2 is sufficient to kick-start the subsequent nucleation of a silicate dust particle.</description><subject>Astrochemistry</subject><subject>Nucleation</subject><subject>Silicates</subject><subject>Stardust</subject><issn>1364-503X</issn><issn>1471-2962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9j81Lw0AQxRdRsFavnnOX1P1MssdS_IKUgq1Fehk2mw1sU5uyuxHjX29ivYjgaWaY936Ph9A1wROCZXbrfFATigmZYJHhEzQiPCUxlQk97XeW8Fhg9nqOLrzf4l6WCDpCYhmUK1sfIm93Vqtgon2rd0YF2-yj2uo67rEumDIqumhpFzcru6CX6KxSO2-ufuYYvdzfrWaPcb54eJpN89hyzELMdEGlKYyQVUp1Qk2mKqFKUslMUZYUZUl0hkmpSlxxIwQRldFKYSkTybhmbIzYkeuars9ptDWhg23Tun1_AsEwNIehOQzNYWjeu-r_XM_L1fSdpcQSKTngjBHMBeMCPu3hiOqfYL1vDXxLfuP_psXHNOuD-YCDs2_KdaBcDUnKUgHrjMMG53Oyns1hw74ANlV_gQ</recordid><startdate>20130713</startdate><enddate>20130713</enddate><creator>Goumans, T. P. M.</creator><creator>Bromley, Stefan T.</creator><general>The Royal Society Publishing</general><scope>BSCLL</scope></search><sort><creationdate>20130713</creationdate><title>Stardust silicate nucleation kick-started by SiO+TiO2</title><author>Goumans, T. P. M. ; Bromley, Stefan T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i403t-3cb29ebe59f72c62e8af5ad1f98a236bdd1c801dad0f4e5515fecaa0996934c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Astrochemistry</topic><topic>Nucleation</topic><topic>Silicates</topic><topic>Stardust</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goumans, T. P. M.</creatorcontrib><creatorcontrib>Bromley, Stefan T.</creatorcontrib><collection>Istex</collection><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goumans, T. P. M.</au><au>Bromley, Stefan T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stardust silicate nucleation kick-started by SiO+TiO2</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle><stitle>Proc. R. Soc. A</stitle><addtitle>Proc. R. Soc. A</addtitle><date>2013-07-13</date><risdate>2013</risdate><volume>371</volume><issue>1994</issue><issn>1364-503X</issn><eissn>1471-2962</eissn><abstract>Dust particles are quintessential for the chemical evolution of the Universe. Dust nucleates in stellar outflows of dying stars and subsequently travels through the interstellar medium, continuously evolving via energetic processing, collisions and condensation. Finally, dust particles are incorporated in the next-generation star or its surrounding planetary system. In oxygen-rich stellar outflows, silicates are observed in the condensation zone (1200-1000 K), but, in spite of several decades of experimental and theoretical study, the stardust nucleation process remains poorly understood. We have previously shown that under these conditions ternary Mg-Si-O clusters may start forming at high enough rates from SiO, Mg and H2O through heteromolecular association processes. In this reaction scheme, none of the possible initial association reactions was thermodynamically favourable owing to the large entropy loss at these temperatures. Here, we follow a previous idea that the incorporation of TiO2 could help to initiate stardust nucleation. In contrast to these studies, we find that there is no need for TiO2 cluster seeds-instead, one molecule of TiO2 is sufficient to kick-start the subsequent nucleation of a silicate dust particle.</abstract><pub>The Royal Society Publishing</pub><doi>10.1098/rsta.2011.0580</doi></addata></record>
fulltext fulltext
identifier ISSN: 1364-503X
ispartof Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2013-07, Vol.371 (1994)
issn 1364-503X
1471-2962
language eng
recordid cdi_royalsociety_journals_10_1098_rsta_2011_0580
source JSTOR; Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list)
subjects Astrochemistry
Nucleation
Silicates
Stardust
title Stardust silicate nucleation kick-started by SiO+TiO2
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A02%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_royal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stardust%20silicate%20nucleation%20kick-started%20by%20SiO+TiO2&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Goumans,%20T.%20P.%20M.&rft.date=2013-07-13&rft.volume=371&rft.issue=1994&rft.issn=1364-503X&rft.eissn=1471-2962&rft_id=info:doi/10.1098/rsta.2011.0580&rft_dat=%3Cistex_royal%3Eark_67375_V84_Z0LM1VCM_Z%3C/istex_royal%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i403t-3cb29ebe59f72c62e8af5ad1f98a236bdd1c801dad0f4e5515fecaa0996934c33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true