Loading…
Interfacing biodegradable molecular hydrogels with liquid crystalsElectronic supplementary information (ESI) available: Experimental details and chamber design; AFM and HPLC procedures; further LC observations. See DOI: 10.1039/c2sm27160e
A self-assembled Fmoc-peptide hydrogel has been interfaced with a liquid crystal (LC) display to give an optical sensor for enzyme activity. An Fmoc-TL-OMe hydrogel was selected as it can be formed in situ by enzyme-mediated assembly with thermolysin, and undergoes enzyme-mediated diassembly upon su...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A self-assembled Fmoc-peptide hydrogel has been interfaced with a liquid crystal (LC) display to give an optical sensor for enzyme activity. An Fmoc-TL-OMe hydrogel was selected as it can be formed
in situ
by enzyme-mediated assembly with thermolysin, and undergoes enzyme-mediated diassembly upon subtilisin addition. This enzyme-responsive hydrogel provides a semi-rigid, highly hydrated and biocompatible environment that also holds the LC display in place. A dual layer design was developed, where a phospholipid-loaded upper gel layer was separated from the LC display by a phospholipid free lower layer. Subtilisin (0.15 μM) digested both layers to give a gel-to-sol transition after several hours that liberated the phospholipid and produced a light-to-dark optical change in the LC display. The optical response was dependent upon the gel-to-sol transition; elastase or common components of serum did not disassemble the Fmoc-TL-OMe hydrogel and did not give an optical response.
A self-assembled Fmoc-peptide hydrogel has been interfaced with a liquid crystal (LC) display to give an optical sensor for enzyme activity. |
---|---|
ISSN: | 1744-683X 1744-6848 |
DOI: | 10.1039/c2sm27160e |