Loading…

Monte Carlo simulations of a polymer confined within a fluid vesicle

Monte Carlo simulations are employed to study a fluid vesicle that contains a single worm-like polymer chain. The contour length of the polymer is about five times the circumference of the nominally spherical vesicle. We vary the degree of polymer confinement in our simulations by increasing the per...

Full description

Saved in:
Bibliographic Details
Published in:Soft matter 2013-01, Vol.9 (15), p.3976-3984
Main Authors: Fošnari, Miha, Igli, Aleš, Kroll, Daniel M, May, Sylvio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c414t-5131b412e78302b62bf30ee91b57d886e4d8ade5c40bd1aede0aa94a38b09c663
cites cdi_FETCH-LOGICAL-c414t-5131b412e78302b62bf30ee91b57d886e4d8ade5c40bd1aede0aa94a38b09c663
container_end_page 3984
container_issue 15
container_start_page 3976
container_title Soft matter
container_volume 9
creator Fošnari, Miha
Igli, Aleš
Kroll, Daniel M
May, Sylvio
description Monte Carlo simulations are employed to study a fluid vesicle that contains a single worm-like polymer chain. The contour length of the polymer is about five times the circumference of the nominally spherical vesicle. We vary the degree of polymer confinement in our simulations by increasing the persistence length of the polymer. The vesicle is represented by a randomly triangulated self-avoiding network that can undergo bending deformations. Upon increasing the persistence length of the polymer beyond the size of the vesicle, we observe a transition of the polymer from an isotropic disordered random conformation to an ordered toroidal coil. Concomitantly, the vesicle adopts an oblate shape to allow for some expansion of the polymer coil inside the vesicle. It is convenient to characterize both polymer and vesicle in terms of the asphericity, a quantity derived from the gyration tensor. At the onset of the polymer's ordering transition, the asphericity passes through a minimum for both polymer and vesicle. The increase in vesicle asphericity for a semi-flexible polymer can be understood in terms of ground state energy calculations, either for a simplified representation of the vesicle shape (we specifically discuss a disk shape with a semi-toroidal rim) or involving a full vesicle shape optimization. The asphericity of the polymer coil results from conformational fluctuations and can be rationalized using Odijk's deflection length of strongly curved semi-flexible polymers. The conformations of a fluid-like lipid vesicle that encloses a single worm-like polymer are studied using Monte Carlo simulations and phenomenological modeling.
doi_str_mv 10.1039/c3sm27938c
format article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_c3sm27938c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1349434752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-5131b412e78302b62bf30ee91b57d886e4d8ade5c40bd1aede0aa94a38b09c663</originalsourceid><addsrcrecordid>eNp9kE1LxDAYhIMouK5evAvxJkI1adI2PcquX7DiRcFbSJM3GEmbmrTK_nsrKytePM3A8zCHQeiYkgtKWH2pWWrzqmZC76AZrTjPSsHF7razl310kNIbIUxwWs7Q8iF0A-CFij7g5NrRq8GFLuFgscJ98OsWItahs64Dgz_d8Oq6iVg_OoM_IDnt4RDtWeUTHP3kHD3fXD8t7rLV4-394mqVaU75kBWU0YbTHCrBSN6UeWMZAahpU1RGiBK4EcpAoTlpDFVggChVc8VEQ2pdlmyOzja7fQzvI6RBti5p8F51EMYkKeM1Z7wq8kk936g6hpQiWNlH16q4lpTI76vk71WTfLKRY9Jb7w8__Y_L3lj2BeaLcfM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1349434752</pqid></control><display><type>article</type><title>Monte Carlo simulations of a polymer confined within a fluid vesicle</title><source>Royal Society of Chemistry</source><creator>Fošnari, Miha ; Igli, Aleš ; Kroll, Daniel M ; May, Sylvio</creator><creatorcontrib>Fošnari, Miha ; Igli, Aleš ; Kroll, Daniel M ; May, Sylvio</creatorcontrib><description>Monte Carlo simulations are employed to study a fluid vesicle that contains a single worm-like polymer chain. The contour length of the polymer is about five times the circumference of the nominally spherical vesicle. We vary the degree of polymer confinement in our simulations by increasing the persistence length of the polymer. The vesicle is represented by a randomly triangulated self-avoiding network that can undergo bending deformations. Upon increasing the persistence length of the polymer beyond the size of the vesicle, we observe a transition of the polymer from an isotropic disordered random conformation to an ordered toroidal coil. Concomitantly, the vesicle adopts an oblate shape to allow for some expansion of the polymer coil inside the vesicle. It is convenient to characterize both polymer and vesicle in terms of the asphericity, a quantity derived from the gyration tensor. At the onset of the polymer's ordering transition, the asphericity passes through a minimum for both polymer and vesicle. The increase in vesicle asphericity for a semi-flexible polymer can be understood in terms of ground state energy calculations, either for a simplified representation of the vesicle shape (we specifically discuss a disk shape with a semi-toroidal rim) or involving a full vesicle shape optimization. The asphericity of the polymer coil results from conformational fluctuations and can be rationalized using Odijk's deflection length of strongly curved semi-flexible polymers. The conformations of a fluid-like lipid vesicle that encloses a single worm-like polymer are studied using Monte Carlo simulations and phenomenological modeling.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/c3sm27938c</identifier><language>eng</language><subject>Asphericity ; Coiling ; Computer simulation ; Fluid dynamics ; Fluid flow ; Mathematical analysis ; Monte Carlo methods ; Vesicles</subject><ispartof>Soft matter, 2013-01, Vol.9 (15), p.3976-3984</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-5131b412e78302b62bf30ee91b57d886e4d8ade5c40bd1aede0aa94a38b09c663</citedby><cites>FETCH-LOGICAL-c414t-5131b412e78302b62bf30ee91b57d886e4d8ade5c40bd1aede0aa94a38b09c663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Fošnari, Miha</creatorcontrib><creatorcontrib>Igli, Aleš</creatorcontrib><creatorcontrib>Kroll, Daniel M</creatorcontrib><creatorcontrib>May, Sylvio</creatorcontrib><title>Monte Carlo simulations of a polymer confined within a fluid vesicle</title><title>Soft matter</title><description>Monte Carlo simulations are employed to study a fluid vesicle that contains a single worm-like polymer chain. The contour length of the polymer is about five times the circumference of the nominally spherical vesicle. We vary the degree of polymer confinement in our simulations by increasing the persistence length of the polymer. The vesicle is represented by a randomly triangulated self-avoiding network that can undergo bending deformations. Upon increasing the persistence length of the polymer beyond the size of the vesicle, we observe a transition of the polymer from an isotropic disordered random conformation to an ordered toroidal coil. Concomitantly, the vesicle adopts an oblate shape to allow for some expansion of the polymer coil inside the vesicle. It is convenient to characterize both polymer and vesicle in terms of the asphericity, a quantity derived from the gyration tensor. At the onset of the polymer's ordering transition, the asphericity passes through a minimum for both polymer and vesicle. The increase in vesicle asphericity for a semi-flexible polymer can be understood in terms of ground state energy calculations, either for a simplified representation of the vesicle shape (we specifically discuss a disk shape with a semi-toroidal rim) or involving a full vesicle shape optimization. The asphericity of the polymer coil results from conformational fluctuations and can be rationalized using Odijk's deflection length of strongly curved semi-flexible polymers. The conformations of a fluid-like lipid vesicle that encloses a single worm-like polymer are studied using Monte Carlo simulations and phenomenological modeling.</description><subject>Asphericity</subject><subject>Coiling</subject><subject>Computer simulation</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Mathematical analysis</subject><subject>Monte Carlo methods</subject><subject>Vesicles</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAYhIMouK5evAvxJkI1adI2PcquX7DiRcFbSJM3GEmbmrTK_nsrKytePM3A8zCHQeiYkgtKWH2pWWrzqmZC76AZrTjPSsHF7razl310kNIbIUxwWs7Q8iF0A-CFij7g5NrRq8GFLuFgscJ98OsWItahs64Dgz_d8Oq6iVg_OoM_IDnt4RDtWeUTHP3kHD3fXD8t7rLV4-394mqVaU75kBWU0YbTHCrBSN6UeWMZAahpU1RGiBK4EcpAoTlpDFVggChVc8VEQ2pdlmyOzja7fQzvI6RBti5p8F51EMYkKeM1Z7wq8kk936g6hpQiWNlH16q4lpTI76vk71WTfLKRY9Jb7w8__Y_L3lj2BeaLcfM</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Fošnari, Miha</creator><creator>Igli, Aleš</creator><creator>Kroll, Daniel M</creator><creator>May, Sylvio</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20130101</creationdate><title>Monte Carlo simulations of a polymer confined within a fluid vesicle</title><author>Fošnari, Miha ; Igli, Aleš ; Kroll, Daniel M ; May, Sylvio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-5131b412e78302b62bf30ee91b57d886e4d8ade5c40bd1aede0aa94a38b09c663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Asphericity</topic><topic>Coiling</topic><topic>Computer simulation</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Mathematical analysis</topic><topic>Monte Carlo methods</topic><topic>Vesicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fošnari, Miha</creatorcontrib><creatorcontrib>Igli, Aleš</creatorcontrib><creatorcontrib>Kroll, Daniel M</creatorcontrib><creatorcontrib>May, Sylvio</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fošnari, Miha</au><au>Igli, Aleš</au><au>Kroll, Daniel M</au><au>May, Sylvio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monte Carlo simulations of a polymer confined within a fluid vesicle</atitle><jtitle>Soft matter</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>9</volume><issue>15</issue><spage>3976</spage><epage>3984</epage><pages>3976-3984</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>Monte Carlo simulations are employed to study a fluid vesicle that contains a single worm-like polymer chain. The contour length of the polymer is about five times the circumference of the nominally spherical vesicle. We vary the degree of polymer confinement in our simulations by increasing the persistence length of the polymer. The vesicle is represented by a randomly triangulated self-avoiding network that can undergo bending deformations. Upon increasing the persistence length of the polymer beyond the size of the vesicle, we observe a transition of the polymer from an isotropic disordered random conformation to an ordered toroidal coil. Concomitantly, the vesicle adopts an oblate shape to allow for some expansion of the polymer coil inside the vesicle. It is convenient to characterize both polymer and vesicle in terms of the asphericity, a quantity derived from the gyration tensor. At the onset of the polymer's ordering transition, the asphericity passes through a minimum for both polymer and vesicle. The increase in vesicle asphericity for a semi-flexible polymer can be understood in terms of ground state energy calculations, either for a simplified representation of the vesicle shape (we specifically discuss a disk shape with a semi-toroidal rim) or involving a full vesicle shape optimization. The asphericity of the polymer coil results from conformational fluctuations and can be rationalized using Odijk's deflection length of strongly curved semi-flexible polymers. The conformations of a fluid-like lipid vesicle that encloses a single worm-like polymer are studied using Monte Carlo simulations and phenomenological modeling.</abstract><doi>10.1039/c3sm27938c</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1744-683X
ispartof Soft matter, 2013-01, Vol.9 (15), p.3976-3984
issn 1744-683X
1744-6848
language eng
recordid cdi_rsc_primary_c3sm27938c
source Royal Society of Chemistry
subjects Asphericity
Coiling
Computer simulation
Fluid dynamics
Fluid flow
Mathematical analysis
Monte Carlo methods
Vesicles
title Monte Carlo simulations of a polymer confined within a fluid vesicle
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A49%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monte%20Carlo%20simulations%20of%20a%20polymer%20confined%20within%20a%20fluid%20vesicle&rft.jtitle=Soft%20matter&rft.au=Fo%C5%A1nari,%20Miha&rft.date=2013-01-01&rft.volume=9&rft.issue=15&rft.spage=3976&rft.epage=3984&rft.pages=3976-3984&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/c3sm27938c&rft_dat=%3Cproquest_rsc_p%3E1349434752%3C/proquest_rsc_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c414t-5131b412e78302b62bf30ee91b57d886e4d8ade5c40bd1aede0aa94a38b09c663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1349434752&rft_id=info:pmid/&rfr_iscdi=true