Loading…
Chiral effects in dual-DNA braiding
The biologically important problem of DNA braiding was studied in the past by means of dual-DNA magnetic tweezer experiments. In such experiments, two DNA molecules are braided about each other using an externally imposed force and torque. Here we develop a theoretical model of molecular braiding th...
Saved in:
Published in: | Soft matter 2013-01, Vol.9 (41), p.9833-9848 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The biologically important problem of DNA braiding was studied in the past by means of dual-DNA magnetic tweezer experiments. In such experiments, two DNA molecules are braided about each other using an externally imposed force and torque. Here we develop a theoretical model of molecular braiding that includes interactions between molecules, thermal fluctuations, and the elastic response of molecules, all in a consistent manner. This is useful to study the chiral effects of helix-dependent electrostatic interactions on the braid's equilibrium geometrical and mechanical properties. When helix-dependent forces are weak, our model yields a reasonably accurate reproduction of previously measured extension-rotation curves, where only very slight chirality has been observed. On the other hand, when helix-specific electrostatic forces are strong, the model predicts several new features of the extension-rotation curves. These are: (a) a distinct asymmetry between left-handed and right-handed DNA braiding; (b) the emergence, under a critical pulling force, of coexistence regions of tightly and loosely wound DNA; (c) spontaneous formation of left-handed DNA braids at zero external torque (zero bead rotations). Strong chiral forces are expected for braiding experiments conducted in solutions in which there are counter-ions that bind specifically in the DNA grooves.
We develop a model to describe dual-DNA braiding experiments and use this model to study the effect of helix-specific interactions in such experiments. |
---|---|
ISSN: | 1744-683X 1744-6848 |
DOI: | 10.1039/c3sm51573g |