Loading…

Unusual Mn coordination and redox chemistry in the high capacity borate cathode Li7Mn(BO3)3Electronic supplementary information (ESI) available. See DOI: 10.1039/c5cp02711j

The recently discovered lithium-rich cathode material Li 7 Mn(BO 3 ) 3 has a high theoretical capacity and an unusual tetrahedral Mn 2+ coordination. Atomistic simulation and density functional theory (DFT) techniques are employed to provide insights into the defect and redox chemistry, the structur...

Full description

Saved in:
Bibliographic Details
Main Authors: Roos, Julian, Eames, Christopher, Wood, Stephen M, Whiteside, Alexander, Saiful Islam, M
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 22265
container_issue 34
container_start_page 22259
container_title
container_volume 17
creator Roos, Julian
Eames, Christopher
Wood, Stephen M
Whiteside, Alexander
Saiful Islam, M
description The recently discovered lithium-rich cathode material Li 7 Mn(BO 3 ) 3 has a high theoretical capacity and an unusual tetrahedral Mn 2+ coordination. Atomistic simulation and density functional theory (DFT) techniques are employed to provide insights into the defect and redox chemistry, the structural changes upon lithium extraction and the mechanisms of lithium ion diffusion. The most favourable intrinsic defects are Li/Mn anti-site pairs, where Li and Mn ions occupy interchanged positions, and Li Frenkel defects. DFT calculations reproduce the experimental cell voltage and confirm the presence of the unusually high Mn V redox state, which corresponds to a theoretical capacity of nearly 288 mA h g −1 . The ability to reach the high manganese oxidation state is related to both the initial tetrahedral coordination of Mn and the observed distortion/tilting of the BO 3 units to accommodate the contraction of the Mn-O bonds upon oxidation. Molecular dynamics (MD) simulations indicate fast three-dimensional lithium diffusion in line with the good rate performance observed. The recently discovered lithium-rich cathode material Li 7 Mn(BO 3 ) 3 has a high theoretical capacity and an unusual tetrahedral Mn 2+ coordination.
doi_str_mv 10.1039/c5cp02711j
format article
fullrecord <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_c5cp02711j</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c5cp02711j</sourcerecordid><originalsourceid>FETCH-rsc_primary_c5cp02711j3</originalsourceid><addsrcrecordid>eNqFT8FKAzEUDKJgrV68C89be2hNTNu1HtWVFiw9VM_La_atm5JNQpIV-09-pEVFD4KeZoYZZhjGTgUfCi6nF2qsPL_MhNjssY4YTeRgyq9G-988mxyyoxg3nHMxFrLD3p5sG1s0sLCgnAultpi0s4C2hEClewVVU6NjClvQFlJNUOvnGhR6VDptYe0CJtrpVLuS4EFnC9u7Wcq-zA2pFJzVCmLrvaGGbMKPnsqF5nOnl6_mfcAX1AbXhoawIoK75fwafn86ZgcVmkgnX9hlZ_f54-1sEKIqfNDNrrz4icv__fO__MKXlXwHL7xqMA</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Unusual Mn coordination and redox chemistry in the high capacity borate cathode Li7Mn(BO3)3Electronic supplementary information (ESI) available. See DOI: 10.1039/c5cp02711j</title><source>Royal Society of Chemistry</source><creator>Roos, Julian ; Eames, Christopher ; Wood, Stephen M ; Whiteside, Alexander ; Saiful Islam, M</creator><creatorcontrib>Roos, Julian ; Eames, Christopher ; Wood, Stephen M ; Whiteside, Alexander ; Saiful Islam, M</creatorcontrib><description>The recently discovered lithium-rich cathode material Li 7 Mn(BO 3 ) 3 has a high theoretical capacity and an unusual tetrahedral Mn 2+ coordination. Atomistic simulation and density functional theory (DFT) techniques are employed to provide insights into the defect and redox chemistry, the structural changes upon lithium extraction and the mechanisms of lithium ion diffusion. The most favourable intrinsic defects are Li/Mn anti-site pairs, where Li and Mn ions occupy interchanged positions, and Li Frenkel defects. DFT calculations reproduce the experimental cell voltage and confirm the presence of the unusually high Mn V redox state, which corresponds to a theoretical capacity of nearly 288 mA h g −1 . The ability to reach the high manganese oxidation state is related to both the initial tetrahedral coordination of Mn and the observed distortion/tilting of the BO 3 units to accommodate the contraction of the Mn-O bonds upon oxidation. Molecular dynamics (MD) simulations indicate fast three-dimensional lithium diffusion in line with the good rate performance observed. The recently discovered lithium-rich cathode material Li 7 Mn(BO 3 ) 3 has a high theoretical capacity and an unusual tetrahedral Mn 2+ coordination.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c5cp02711j</identifier><language>eng</language><creationdate>2015-08</creationdate><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Roos, Julian</creatorcontrib><creatorcontrib>Eames, Christopher</creatorcontrib><creatorcontrib>Wood, Stephen M</creatorcontrib><creatorcontrib>Whiteside, Alexander</creatorcontrib><creatorcontrib>Saiful Islam, M</creatorcontrib><title>Unusual Mn coordination and redox chemistry in the high capacity borate cathode Li7Mn(BO3)3Electronic supplementary information (ESI) available. See DOI: 10.1039/c5cp02711j</title><description>The recently discovered lithium-rich cathode material Li 7 Mn(BO 3 ) 3 has a high theoretical capacity and an unusual tetrahedral Mn 2+ coordination. Atomistic simulation and density functional theory (DFT) techniques are employed to provide insights into the defect and redox chemistry, the structural changes upon lithium extraction and the mechanisms of lithium ion diffusion. The most favourable intrinsic defects are Li/Mn anti-site pairs, where Li and Mn ions occupy interchanged positions, and Li Frenkel defects. DFT calculations reproduce the experimental cell voltage and confirm the presence of the unusually high Mn V redox state, which corresponds to a theoretical capacity of nearly 288 mA h g −1 . The ability to reach the high manganese oxidation state is related to both the initial tetrahedral coordination of Mn and the observed distortion/tilting of the BO 3 units to accommodate the contraction of the Mn-O bonds upon oxidation. Molecular dynamics (MD) simulations indicate fast three-dimensional lithium diffusion in line with the good rate performance observed. The recently discovered lithium-rich cathode material Li 7 Mn(BO 3 ) 3 has a high theoretical capacity and an unusual tetrahedral Mn 2+ coordination.</description><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFT8FKAzEUDKJgrV68C89be2hNTNu1HtWVFiw9VM_La_atm5JNQpIV-09-pEVFD4KeZoYZZhjGTgUfCi6nF2qsPL_MhNjssY4YTeRgyq9G-988mxyyoxg3nHMxFrLD3p5sG1s0sLCgnAultpi0s4C2hEClewVVU6NjClvQFlJNUOvnGhR6VDptYe0CJtrpVLuS4EFnC9u7Wcq-zA2pFJzVCmLrvaGGbMKPnsqF5nOnl6_mfcAX1AbXhoawIoK75fwafn86ZgcVmkgnX9hlZ_f54-1sEKIqfNDNrrz4icv__fO__MKXlXwHL7xqMA</recordid><startdate>20150819</startdate><enddate>20150819</enddate><creator>Roos, Julian</creator><creator>Eames, Christopher</creator><creator>Wood, Stephen M</creator><creator>Whiteside, Alexander</creator><creator>Saiful Islam, M</creator><scope/></search><sort><creationdate>20150819</creationdate><title>Unusual Mn coordination and redox chemistry in the high capacity borate cathode Li7Mn(BO3)3Electronic supplementary information (ESI) available. See DOI: 10.1039/c5cp02711j</title><author>Roos, Julian ; Eames, Christopher ; Wood, Stephen M ; Whiteside, Alexander ; Saiful Islam, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_c5cp02711j3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roos, Julian</creatorcontrib><creatorcontrib>Eames, Christopher</creatorcontrib><creatorcontrib>Wood, Stephen M</creatorcontrib><creatorcontrib>Whiteside, Alexander</creatorcontrib><creatorcontrib>Saiful Islam, M</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roos, Julian</au><au>Eames, Christopher</au><au>Wood, Stephen M</au><au>Whiteside, Alexander</au><au>Saiful Islam, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unusual Mn coordination and redox chemistry in the high capacity borate cathode Li7Mn(BO3)3Electronic supplementary information (ESI) available. See DOI: 10.1039/c5cp02711j</atitle><date>2015-08-19</date><risdate>2015</risdate><volume>17</volume><issue>34</issue><spage>22259</spage><epage>22265</epage><pages>22259-22265</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>The recently discovered lithium-rich cathode material Li 7 Mn(BO 3 ) 3 has a high theoretical capacity and an unusual tetrahedral Mn 2+ coordination. Atomistic simulation and density functional theory (DFT) techniques are employed to provide insights into the defect and redox chemistry, the structural changes upon lithium extraction and the mechanisms of lithium ion diffusion. The most favourable intrinsic defects are Li/Mn anti-site pairs, where Li and Mn ions occupy interchanged positions, and Li Frenkel defects. DFT calculations reproduce the experimental cell voltage and confirm the presence of the unusually high Mn V redox state, which corresponds to a theoretical capacity of nearly 288 mA h g −1 . The ability to reach the high manganese oxidation state is related to both the initial tetrahedral coordination of Mn and the observed distortion/tilting of the BO 3 units to accommodate the contraction of the Mn-O bonds upon oxidation. Molecular dynamics (MD) simulations indicate fast three-dimensional lithium diffusion in line with the good rate performance observed. The recently discovered lithium-rich cathode material Li 7 Mn(BO 3 ) 3 has a high theoretical capacity and an unusual tetrahedral Mn 2+ coordination.</abstract><doi>10.1039/c5cp02711j</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof
issn 1463-9076
1463-9084
language eng
recordid cdi_rsc_primary_c5cp02711j
source Royal Society of Chemistry
title Unusual Mn coordination and redox chemistry in the high capacity borate cathode Li7Mn(BO3)3Electronic supplementary information (ESI) available. See DOI: 10.1039/c5cp02711j
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A36%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unusual%20Mn%20coordination%20and%20redox%20chemistry%20in%20the%20high%20capacity%20borate%20cathode%20Li7Mn(BO3)3Electronic%20supplementary%20information%20(ESI)%20available.%20See%20DOI:%2010.1039/c5cp02711j&rft.au=Roos,%20Julian&rft.date=2015-08-19&rft.volume=17&rft.issue=34&rft.spage=22259&rft.epage=22265&rft.pages=22259-22265&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c5cp02711j&rft_dat=%3Crsc%3Ec5cp02711j%3C/rsc%3E%3Cgrp_id%3Ecdi_FETCH-rsc_primary_c5cp02711j3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true