Loading…
Stabilization of silicon nanoparticles in graphene aerogel framework for lithium ion storageElectronic supplementary information (ESI) available. See DOI: 10.1039/c5ra00566c
The severe volume change and aggregation of silicon nanoparticles (SiNPs) when used as an anode for lithium ion batteries (LIBs) are the key issue. Here, we demonstrate a novel approach to wrapping SiNPs in three-dimensional reduced graphene oxide (RGO) aerogel. The RGO aerogel not only provides a p...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The severe volume change and aggregation of silicon nanoparticles (SiNPs) when used as an anode for lithium ion batteries (LIBs) are the key issue. Here, we demonstrate a novel approach to wrapping SiNPs in three-dimensional reduced graphene oxide (RGO) aerogel. The RGO aerogel not only provides a porous network for entrapping SiNPs to accommodate the volume change during cycling, but also facilitates electrolyte transport. Furthermore, the continuous RGO network is favourable for electron transfer. The graphene-wrapped SiNPs were stable and displayed an excellent rate capacity, delivering a reversible capacity of about 2000 mA h g
−1
after 40 cycles.
Schematic illustration of the preparation of Si/RGO-AG. |
---|---|
ISSN: | 2046-2069 |
DOI: | 10.1039/c5ra00566c |