Loading…

Fabrication and stabilization of nanoscale emulsions by formation of a thin polymer membrane at the oil-water interface

This study introduces a robust approach for the fabrication of extremely stable oil-in-water nanoemulsions in which the interface is stabilized by assembly of amphiphilic poly(ethylene oxide)- block -poly( -caprolactone) (PEO- b -PCL) copolymers. Phase inversion emulsification, induced by variation...

Full description

Saved in:
Bibliographic Details
Published in:RSC advances 2015-01, Vol.5 (57), p.46276-46281
Main Authors: Shin, Kyounghee, Kim, Jeong Won, Park, Hanhee, Choi, Hong Sung, Chae, Pil Seok, Nam, Yoon Sung, Kim, Jin Woong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c312t-af6c93c89f84c55d469eb7acdceb6fa40c96e5e4ff8cadb956db592d941de3fe3
cites cdi_FETCH-LOGICAL-c312t-af6c93c89f84c55d469eb7acdceb6fa40c96e5e4ff8cadb956db592d941de3fe3
container_end_page 46281
container_issue 57
container_start_page 46276
container_title RSC advances
container_volume 5
creator Shin, Kyounghee
Kim, Jeong Won
Park, Hanhee
Choi, Hong Sung
Chae, Pil Seok
Nam, Yoon Sung
Kim, Jin Woong
description This study introduces a robust approach for the fabrication of extremely stable oil-in-water nanoemulsions in which the interface is stabilized by assembly of amphiphilic poly(ethylene oxide)- block -poly( -caprolactone) (PEO- b -PCL) copolymers. Phase inversion emulsification, induced by variation of the water volume fraction, facilitated effective assembly of the block copolymers at the oil-water interface. Subsequent application of simple probe-type sonication reduced the droplet size of the precursor emulsions to approximately 200 nm. The prepared nanoemulsions were surprisingly stable against drop coalescence and aggregation, as confirmed by analysis of changes in the droplet size after repeated freeze-thaw cycling and by monitoring the creaming kinetics under conditions of high ionic strength and density mismatch. The results highlight that good structural assembly of the PEO- b -PCL block copolymers at the oil-water interface generated a mechanically flexible but tough polymer film, thereby remarkably improving the emulsion stability. Extremely stable O/W nanoemulsions are fabricated by effective assembly of an amphiphilic PEO- b -PCL copolymer at the oil-water interface during phase inversion, which favors formation of a thin PEO- b -PCL film at the interface.
doi_str_mv 10.1039/c5ra03872c
format article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_c5ra03872c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1730108709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-af6c93c89f84c55d469eb7acdceb6fa40c96e5e4ff8cadb956db592d941de3fe3</originalsourceid><addsrcrecordid>eNp9kUFLxDAQhYsouKx78S7EmwjVpGnT5rgUVwVBED2XaTLBSNusSZdl_fVGK6sn5zAzzPsYhjdJcsroFaNcXqvCA-VVmamDZJbRXKQZFfLwT3-cLEJ4ozFEwTLBZsl2Ba23CkbrBgKDJmGE1nb2Y5o4QwYYXFDQIcF-04U4DaTdEeN8v2eAjK92IGvX7Xr0pMe-9TAggTEKSJzt0i2MUbFDzAYUniRHBrqAi586T15WN8_1XfrweHtfLx9SxVk2pmCEklxV0lS5KgqdC4ltCUorbIWBnCopsMDcmEqBbmUhdFvITMucaeQG-Ty5mPauvXvfYBib3gaFXRfPc5vQsJJTRquSyoheTqjyLgSPpll724PfNYw2XwY3dfG0_Da4jvD5BPug9tzvA5q1NpE5-4_hn8yhhoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1730108709</pqid></control><display><type>article</type><title>Fabrication and stabilization of nanoscale emulsions by formation of a thin polymer membrane at the oil-water interface</title><source>Royal Society of Chemistry</source><creator>Shin, Kyounghee ; Kim, Jeong Won ; Park, Hanhee ; Choi, Hong Sung ; Chae, Pil Seok ; Nam, Yoon Sung ; Kim, Jin Woong</creator><creatorcontrib>Shin, Kyounghee ; Kim, Jeong Won ; Park, Hanhee ; Choi, Hong Sung ; Chae, Pil Seok ; Nam, Yoon Sung ; Kim, Jin Woong</creatorcontrib><description>This study introduces a robust approach for the fabrication of extremely stable oil-in-water nanoemulsions in which the interface is stabilized by assembly of amphiphilic poly(ethylene oxide)- block -poly( -caprolactone) (PEO- b -PCL) copolymers. Phase inversion emulsification, induced by variation of the water volume fraction, facilitated effective assembly of the block copolymers at the oil-water interface. Subsequent application of simple probe-type sonication reduced the droplet size of the precursor emulsions to approximately 200 nm. The prepared nanoemulsions were surprisingly stable against drop coalescence and aggregation, as confirmed by analysis of changes in the droplet size after repeated freeze-thaw cycling and by monitoring the creaming kinetics under conditions of high ionic strength and density mismatch. The results highlight that good structural assembly of the PEO- b -PCL block copolymers at the oil-water interface generated a mechanically flexible but tough polymer film, thereby remarkably improving the emulsion stability. Extremely stable O/W nanoemulsions are fabricated by effective assembly of an amphiphilic PEO- b -PCL copolymer at the oil-water interface during phase inversion, which favors formation of a thin PEO- b -PCL film at the interface.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/c5ra03872c</identifier><language>eng</language><subject>Agglomeration ; Assembly ; Block copolymers ; Density ; Droplets ; Emulsions ; Nanostructure ; Phase shift</subject><ispartof>RSC advances, 2015-01, Vol.5 (57), p.46276-46281</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-af6c93c89f84c55d469eb7acdceb6fa40c96e5e4ff8cadb956db592d941de3fe3</citedby><cites>FETCH-LOGICAL-c312t-af6c93c89f84c55d469eb7acdceb6fa40c96e5e4ff8cadb956db592d941de3fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Shin, Kyounghee</creatorcontrib><creatorcontrib>Kim, Jeong Won</creatorcontrib><creatorcontrib>Park, Hanhee</creatorcontrib><creatorcontrib>Choi, Hong Sung</creatorcontrib><creatorcontrib>Chae, Pil Seok</creatorcontrib><creatorcontrib>Nam, Yoon Sung</creatorcontrib><creatorcontrib>Kim, Jin Woong</creatorcontrib><title>Fabrication and stabilization of nanoscale emulsions by formation of a thin polymer membrane at the oil-water interface</title><title>RSC advances</title><description>This study introduces a robust approach for the fabrication of extremely stable oil-in-water nanoemulsions in which the interface is stabilized by assembly of amphiphilic poly(ethylene oxide)- block -poly( -caprolactone) (PEO- b -PCL) copolymers. Phase inversion emulsification, induced by variation of the water volume fraction, facilitated effective assembly of the block copolymers at the oil-water interface. Subsequent application of simple probe-type sonication reduced the droplet size of the precursor emulsions to approximately 200 nm. The prepared nanoemulsions were surprisingly stable against drop coalescence and aggregation, as confirmed by analysis of changes in the droplet size after repeated freeze-thaw cycling and by monitoring the creaming kinetics under conditions of high ionic strength and density mismatch. The results highlight that good structural assembly of the PEO- b -PCL block copolymers at the oil-water interface generated a mechanically flexible but tough polymer film, thereby remarkably improving the emulsion stability. Extremely stable O/W nanoemulsions are fabricated by effective assembly of an amphiphilic PEO- b -PCL copolymer at the oil-water interface during phase inversion, which favors formation of a thin PEO- b -PCL film at the interface.</description><subject>Agglomeration</subject><subject>Assembly</subject><subject>Block copolymers</subject><subject>Density</subject><subject>Droplets</subject><subject>Emulsions</subject><subject>Nanostructure</subject><subject>Phase shift</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kUFLxDAQhYsouKx78S7EmwjVpGnT5rgUVwVBED2XaTLBSNusSZdl_fVGK6sn5zAzzPsYhjdJcsroFaNcXqvCA-VVmamDZJbRXKQZFfLwT3-cLEJ4ozFEwTLBZsl2Ba23CkbrBgKDJmGE1nb2Y5o4QwYYXFDQIcF-04U4DaTdEeN8v2eAjK92IGvX7Xr0pMe-9TAggTEKSJzt0i2MUbFDzAYUniRHBrqAi586T15WN8_1XfrweHtfLx9SxVk2pmCEklxV0lS5KgqdC4ltCUorbIWBnCopsMDcmEqBbmUhdFvITMucaeQG-Ty5mPauvXvfYBib3gaFXRfPc5vQsJJTRquSyoheTqjyLgSPpll724PfNYw2XwY3dfG0_Da4jvD5BPug9tzvA5q1NpE5-4_hn8yhhoQ</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Shin, Kyounghee</creator><creator>Kim, Jeong Won</creator><creator>Park, Hanhee</creator><creator>Choi, Hong Sung</creator><creator>Chae, Pil Seok</creator><creator>Nam, Yoon Sung</creator><creator>Kim, Jin Woong</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20150101</creationdate><title>Fabrication and stabilization of nanoscale emulsions by formation of a thin polymer membrane at the oil-water interface</title><author>Shin, Kyounghee ; Kim, Jeong Won ; Park, Hanhee ; Choi, Hong Sung ; Chae, Pil Seok ; Nam, Yoon Sung ; Kim, Jin Woong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-af6c93c89f84c55d469eb7acdceb6fa40c96e5e4ff8cadb956db592d941de3fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Agglomeration</topic><topic>Assembly</topic><topic>Block copolymers</topic><topic>Density</topic><topic>Droplets</topic><topic>Emulsions</topic><topic>Nanostructure</topic><topic>Phase shift</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shin, Kyounghee</creatorcontrib><creatorcontrib>Kim, Jeong Won</creatorcontrib><creatorcontrib>Park, Hanhee</creatorcontrib><creatorcontrib>Choi, Hong Sung</creatorcontrib><creatorcontrib>Chae, Pil Seok</creatorcontrib><creatorcontrib>Nam, Yoon Sung</creatorcontrib><creatorcontrib>Kim, Jin Woong</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shin, Kyounghee</au><au>Kim, Jeong Won</au><au>Park, Hanhee</au><au>Choi, Hong Sung</au><au>Chae, Pil Seok</au><au>Nam, Yoon Sung</au><au>Kim, Jin Woong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication and stabilization of nanoscale emulsions by formation of a thin polymer membrane at the oil-water interface</atitle><jtitle>RSC advances</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>5</volume><issue>57</issue><spage>46276</spage><epage>46281</epage><pages>46276-46281</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>This study introduces a robust approach for the fabrication of extremely stable oil-in-water nanoemulsions in which the interface is stabilized by assembly of amphiphilic poly(ethylene oxide)- block -poly( -caprolactone) (PEO- b -PCL) copolymers. Phase inversion emulsification, induced by variation of the water volume fraction, facilitated effective assembly of the block copolymers at the oil-water interface. Subsequent application of simple probe-type sonication reduced the droplet size of the precursor emulsions to approximately 200 nm. The prepared nanoemulsions were surprisingly stable against drop coalescence and aggregation, as confirmed by analysis of changes in the droplet size after repeated freeze-thaw cycling and by monitoring the creaming kinetics under conditions of high ionic strength and density mismatch. The results highlight that good structural assembly of the PEO- b -PCL block copolymers at the oil-water interface generated a mechanically flexible but tough polymer film, thereby remarkably improving the emulsion stability. Extremely stable O/W nanoemulsions are fabricated by effective assembly of an amphiphilic PEO- b -PCL copolymer at the oil-water interface during phase inversion, which favors formation of a thin PEO- b -PCL film at the interface.</abstract><doi>10.1039/c5ra03872c</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2046-2069
ispartof RSC advances, 2015-01, Vol.5 (57), p.46276-46281
issn 2046-2069
2046-2069
language eng
recordid cdi_rsc_primary_c5ra03872c
source Royal Society of Chemistry
subjects Agglomeration
Assembly
Block copolymers
Density
Droplets
Emulsions
Nanostructure
Phase shift
title Fabrication and stabilization of nanoscale emulsions by formation of a thin polymer membrane at the oil-water interface
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A06%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20and%20stabilization%20of%20nanoscale%20emulsions%20by%20formation%20of%20a%20thin%20polymer%20membrane%20at%20the%20oil-water%20interface&rft.jtitle=RSC%20advances&rft.au=Shin,%20Kyounghee&rft.date=2015-01-01&rft.volume=5&rft.issue=57&rft.spage=46276&rft.epage=46281&rft.pages=46276-46281&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/c5ra03872c&rft_dat=%3Cproquest_rsc_p%3E1730108709%3C/proquest_rsc_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c312t-af6c93c89f84c55d469eb7acdceb6fa40c96e5e4ff8cadb956db592d941de3fe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1730108709&rft_id=info:pmid/&rfr_iscdi=true