Loading…
Nitrogen-doped carbons prepared from eutectic mixtures as metal-free oxygen reduction catalystsElectronic supplementary information (ESI) available. See DOI: 10.1039/c5ta08630b
Deep eutectic solvents (DESs) composed of resorcinol, either 2-cyanophenol or 4-cyanophenol, and choline chloride were used for the synthesis of hierarchical nitrogen-doped carbon molecular sieves. Carbons were obtained with high conversions by polycondensation of resorcinol and either 2-cyanophenol...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Deep eutectic solvents (DESs) composed of resorcinol, either 2-cyanophenol or 4-cyanophenol, and choline chloride were used for the synthesis of hierarchical nitrogen-doped carbon molecular sieves. Carbons were obtained with high conversions by polycondensation of resorcinol and either 2-cyanophenol or 4-cyanophenol with formaldehyde, and subsequent carbonization at 800 °C in nitrogen atmosphere. The nitrogen content was
ca.
2.4 wt%, revealing an excellent nitrogen-doping efficiency for cyanophenol derivatives when used in the form of DES. The use of either 2-cyanophenol or 4-cyanophenol modified the contribution of quaternary-N
valley
groups in the resulting carbons, being larger in carbons coming from 4-cyanophenol than in those coming from 2-cyanophenol. The hierarchical porous structure was composed of micro-, meso- and macropores, and the diameter distribution of mesopores was also related to the use of either 2-cyanophenol or 4-cyanophenol. These structural and compositional differences were critical for the use of the resulting hierarchical nitrogen-doped carbons as efficient metal-free electrocatalysts. In particular, the carbons coming 4-cyanophenol proved particularly effective in the direct reduction of oxygen to OH
−
(H
2
O in acidic solution) through a four-electron (4e
−
) process with high catalytic activity and selectivity, and longer stability and stronger tolerance to crossover effects than platinum-based electrocatalysts.
Deep eutectic solvents (DESs) composed of resorcinol, either 2-cyanophenol or 4-cyanophenol, and choline chloride were used for the synthesis of hierarchical nitrogen-doped carbon molecular sieves. |
---|---|
ISSN: | 2050-7488 2050-7496 |
DOI: | 10.1039/c5ta08630b |