Loading…
Water splitting using a three-dimensional plasmonic photoanode with titanium dioxide nano-tunnelsElectronic supplementary information (ESI) available. See DOI: 10.1039/c6gc03217f
In this study, we developed a three-dimensional plasmonic photoanode using titanium dioxide nano-tunnels (TNTs) loaded with gold nanoparticles (Au-NPs) for water splitting, to enhance the reaction efficiency. We also optimized the procedure of loading Au-NPs on complex three-dimensional structures....
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, we developed a three-dimensional plasmonic photoanode using titanium dioxide nano-tunnels (TNTs) loaded with gold nanoparticles (Au-NPs) for water splitting, to enhance the reaction efficiency. We also optimized the procedure of loading Au-NPs on complex three-dimensional structures. We discuss the correlation between the plasmon-induced charge separation obtained from photoelectrochemical measurement and the morphology of Au-NPs observed by transmission electron microscopy. We have successfully deposited well-dispersed Au-NPs on the walls of TNTs using HAu(OH)
4
as a precursor. The amount of Au-NPs on the TNTs was estimated to be approximately 15-fold larger than that on the thin film titanium dioxide substrate, and the particle size remained small. Photoelectrochemical water splitting was achieved by using a two-electrode system rather than a three-electrode system. Furthermore, stoichiometric water splitting was confirmed by estimating the amounts of the evolved H
2
and O
2
gases under visible light irradiation.
A three-dimensional plasmonic photoanode using titanium dioxide nano-tunnels loaded with gold nanoparticles for water splitting was developed. |
---|---|
ISSN: | 1463-9262 1463-9270 |
DOI: | 10.1039/c6gc03217f |