Loading…
Phosphorescent oxygen-sensing and singlet oxygen production by a biosynthetic silk
A recombinant coiled-coil silk was utilised to immobilise heavy-metal-macrocycles which are known to undergo efficient intersystem crossing from the singlet state to the triplet state following excitation with visible light. This spin-forbidden transition leads to phosphorescence and the production...
Saved in:
Published in: | RSC advances 2016-01, Vol.6 (46), p.3953-39533 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A recombinant coiled-coil silk was utilised to immobilise heavy-metal-macrocycles which are known to undergo efficient intersystem crossing from the singlet state to the triplet state following excitation with visible light. This spin-forbidden transition leads to phosphorescence and the production of cytotoxic oxygen species. We explore the requirements for specific binding of these macrocycles and demonstrate that immobilisation does not adversely affect their photochemical properties. The biocompatible materials developed here have potential biomedical applications in photodynamic therapy (PDT) and dynamic oxygen-sensing.
A recombinant coiled-coil silk was utilised to immobilise heavy-metal-macrocycles which are known to undergo efficient intersystem crossing from the singlet state to the triplet state following excitation with visible light. |
---|---|
ISSN: | 2046-2069 2046-2069 |
DOI: | 10.1039/c6ra03731c |