Loading…
Theoretical study of electronic and mechanical properties of FeB
The structural, electronic, and mechanical properties of the Fe 2 B with the I 4/ mcm structure were investigated using first principles calculations. The dynamical stability and mechanical stability of the I 4/ mcm phase were confirmed, according to the calculated phonon dispersion and elastic cons...
Saved in:
Published in: | RSC advances 2016-08, Vol.6 (77), p.73576-7358 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 7358 |
container_issue | 77 |
container_start_page | 73576 |
container_title | RSC advances |
container_volume | 6 |
creator | Deng, Shiyu Zhao, Jiashi Wei, Shubo Zhu, Chunye Lv, Jian Li, Quan Zheng, Weitao |
description | The structural, electronic, and mechanical properties of the Fe
2
B with the
I
4/
mcm
structure were investigated using first principles calculations. The dynamical stability and mechanical stability of the
I
4/
mcm
phase were confirmed, according to the calculated phonon dispersion and elastic constant. The theoretical band structure and density of states showed
I
4/
mcm
Fe
2
B to be metallic. The microscopic mechanism of the structural deformation of
I
4/
mcm
Fe
2
B was examined by calculating ideal strength values at large levels of strain. Our theoretical results demonstrated the failure mode in
I
4/
mcm
Fe
2
B to be dominated by shear, with the lowest pure shear peak stress calculated to be 20.0 GPa.
Fe
2
B is ultra-incompressible under static pressure but rather flexible under uniaxial or shear strain conditions. |
doi_str_mv | 10.1039/c6ra13701f |
format | article |
fullrecord | <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_c6ra13701f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c6ra13701f</sourcerecordid><originalsourceid>FETCH-rsc_primary_c6ra13701f3</originalsourceid><addsrcrecordid>eNpjYBAyNNAzNDC21E82K0o0NDY3MExjYuA0MjAx0zUyMLPkYOAtLs4yAAIzU0MjM0NOBoeQjNT8otSSzOTEHIXiktKUSoX8NIXUnNTkkqL8vMxkhcS8FIXc1OSMxDywkoKi_ILUopLM1GKQOrdUJx4G1rTEnOJUXijNzSDr5hri7KFbVJwcX1CUmZtYVBmPcI0xIXkAw9w5og</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Theoretical study of electronic and mechanical properties of FeB</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Deng, Shiyu ; Zhao, Jiashi ; Wei, Shubo ; Zhu, Chunye ; Lv, Jian ; Li, Quan ; Zheng, Weitao</creator><creatorcontrib>Deng, Shiyu ; Zhao, Jiashi ; Wei, Shubo ; Zhu, Chunye ; Lv, Jian ; Li, Quan ; Zheng, Weitao</creatorcontrib><description>The structural, electronic, and mechanical properties of the Fe
2
B with the
I
4/
mcm
structure were investigated using first principles calculations. The dynamical stability and mechanical stability of the
I
4/
mcm
phase were confirmed, according to the calculated phonon dispersion and elastic constant. The theoretical band structure and density of states showed
I
4/
mcm
Fe
2
B to be metallic. The microscopic mechanism of the structural deformation of
I
4/
mcm
Fe
2
B was examined by calculating ideal strength values at large levels of strain. Our theoretical results demonstrated the failure mode in
I
4/
mcm
Fe
2
B to be dominated by shear, with the lowest pure shear peak stress calculated to be 20.0 GPa.
Fe
2
B is ultra-incompressible under static pressure but rather flexible under uniaxial or shear strain conditions.</description><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/c6ra13701f</identifier><ispartof>RSC advances, 2016-08, Vol.6 (77), p.73576-7358</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Deng, Shiyu</creatorcontrib><creatorcontrib>Zhao, Jiashi</creatorcontrib><creatorcontrib>Wei, Shubo</creatorcontrib><creatorcontrib>Zhu, Chunye</creatorcontrib><creatorcontrib>Lv, Jian</creatorcontrib><creatorcontrib>Li, Quan</creatorcontrib><creatorcontrib>Zheng, Weitao</creatorcontrib><title>Theoretical study of electronic and mechanical properties of FeB</title><title>RSC advances</title><description>The structural, electronic, and mechanical properties of the Fe
2
B with the
I
4/
mcm
structure were investigated using first principles calculations. The dynamical stability and mechanical stability of the
I
4/
mcm
phase were confirmed, according to the calculated phonon dispersion and elastic constant. The theoretical band structure and density of states showed
I
4/
mcm
Fe
2
B to be metallic. The microscopic mechanism of the structural deformation of
I
4/
mcm
Fe
2
B was examined by calculating ideal strength values at large levels of strain. Our theoretical results demonstrated the failure mode in
I
4/
mcm
Fe
2
B to be dominated by shear, with the lowest pure shear peak stress calculated to be 20.0 GPa.
Fe
2
B is ultra-incompressible under static pressure but rather flexible under uniaxial or shear strain conditions.</description><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpjYBAyNNAzNDC21E82K0o0NDY3MExjYuA0MjAx0zUyMLPkYOAtLs4yAAIzU0MjM0NOBoeQjNT8otSSzOTEHIXiktKUSoX8NIXUnNTkkqL8vMxkhcS8FIXc1OSMxDywkoKi_ILUopLM1GKQOrdUJx4G1rTEnOJUXijNzSDr5hri7KFbVJwcX1CUmZtYVBmPcI0xIXkAw9w5og</recordid><startdate>20160802</startdate><enddate>20160802</enddate><creator>Deng, Shiyu</creator><creator>Zhao, Jiashi</creator><creator>Wei, Shubo</creator><creator>Zhu, Chunye</creator><creator>Lv, Jian</creator><creator>Li, Quan</creator><creator>Zheng, Weitao</creator><scope/></search><sort><creationdate>20160802</creationdate><title>Theoretical study of electronic and mechanical properties of FeB</title><author>Deng, Shiyu ; Zhao, Jiashi ; Wei, Shubo ; Zhu, Chunye ; Lv, Jian ; Li, Quan ; Zheng, Weitao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_c6ra13701f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Shiyu</creatorcontrib><creatorcontrib>Zhao, Jiashi</creatorcontrib><creatorcontrib>Wei, Shubo</creatorcontrib><creatorcontrib>Zhu, Chunye</creatorcontrib><creatorcontrib>Lv, Jian</creatorcontrib><creatorcontrib>Li, Quan</creatorcontrib><creatorcontrib>Zheng, Weitao</creatorcontrib><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Shiyu</au><au>Zhao, Jiashi</au><au>Wei, Shubo</au><au>Zhu, Chunye</au><au>Lv, Jian</au><au>Li, Quan</au><au>Zheng, Weitao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical study of electronic and mechanical properties of FeB</atitle><jtitle>RSC advances</jtitle><date>2016-08-02</date><risdate>2016</risdate><volume>6</volume><issue>77</issue><spage>73576</spage><epage>7358</epage><pages>73576-7358</pages><eissn>2046-2069</eissn><abstract>The structural, electronic, and mechanical properties of the Fe
2
B with the
I
4/
mcm
structure were investigated using first principles calculations. The dynamical stability and mechanical stability of the
I
4/
mcm
phase were confirmed, according to the calculated phonon dispersion and elastic constant. The theoretical band structure and density of states showed
I
4/
mcm
Fe
2
B to be metallic. The microscopic mechanism of the structural deformation of
I
4/
mcm
Fe
2
B was examined by calculating ideal strength values at large levels of strain. Our theoretical results demonstrated the failure mode in
I
4/
mcm
Fe
2
B to be dominated by shear, with the lowest pure shear peak stress calculated to be 20.0 GPa.
Fe
2
B is ultra-incompressible under static pressure but rather flexible under uniaxial or shear strain conditions.</abstract><doi>10.1039/c6ra13701f</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2046-2069 |
ispartof | RSC advances, 2016-08, Vol.6 (77), p.73576-7358 |
issn | 2046-2069 |
language | |
recordid | cdi_rsc_primary_c6ra13701f |
source | Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list) |
title | Theoretical study of electronic and mechanical properties of FeB |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T15%3A23%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20study%20of%20electronic%20and%20mechanical%20properties%20of%20FeB&rft.jtitle=RSC%20advances&rft.au=Deng,%20Shiyu&rft.date=2016-08-02&rft.volume=6&rft.issue=77&rft.spage=73576&rft.epage=7358&rft.pages=73576-7358&rft.eissn=2046-2069&rft_id=info:doi/10.1039/c6ra13701f&rft_dat=%3Crsc%3Ec6ra13701f%3C/rsc%3E%3Cgrp_id%3Ecdi_FETCH-rsc_primary_c6ra13701f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |