Loading…

Facile synthesis of carbon-doped graphitic CN@MnO with enhanced electrochemical performance

Exploiting the synergistic advantages of two dimensional-two dimensional architectures, carbon-doped graphitic carbon nitride (CCN) and birnessite manganese oxides (MnO 2 ) were coupled to design a highly efficient novel carbon-doped graphitic carbon nitride@MnO 2 (CCNM) composite for supercapacitor...

Full description

Saved in:
Bibliographic Details
Published in:RSC advances 2016-09, Vol.6 (86), p.8329-83216
Main Authors: Shan, Qian Yuan, Guan, Bo, Zhu, Shi Jin, Zhang, Hai Jun, Zhang, Yu Xin
Format: Article
Language:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 83216
container_issue 86
container_start_page 8329
container_title RSC advances
container_volume 6
creator Shan, Qian Yuan
Guan, Bo
Zhu, Shi Jin
Zhang, Hai Jun
Zhang, Yu Xin
description Exploiting the synergistic advantages of two dimensional-two dimensional architectures, carbon-doped graphitic carbon nitride (CCN) and birnessite manganese oxides (MnO 2 ) were coupled to design a highly efficient novel carbon-doped graphitic carbon nitride@MnO 2 (CCNM) composite for supercapacitors via a facile hydrothermal method. The structural, morphological and electrochemical properties of the composite were characterized by various physicochemical techniques. These findings indicate that the existence of carbon doping can improve the rate performance of composite electrodes. The specific capacitance in a three-electrode system was 324 F g −1 at a current density of 0.2 A g −1 with capacitance retention of 80.2% after 1000 cycles. In principle, the supercapacitor performance was correlated with the hierarchical structure of the CCNM. Exploiting the synergistic advantages of two dimensional architectures, carbon-doped graphitic carbon nitride (CCN) and MnO 2 were coupled to design a highly efficient carbon-doped graphitic carbon nitride@MnO 2 (CCNM) composite for supercapacitors.
doi_str_mv 10.1039/c6ra18265h
format article
fullrecord <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_c6ra18265h</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c6ra18265h</sourcerecordid><originalsourceid>FETCH-rsc_primary_c6ra18265h3</originalsourceid><addsrcrecordid>eNqFzrEKwjAUheEgCIp2cRfyAtWk2qCbUCwu6uLmIPH21kTapNwUpG9vBcHRs_zDtxzGZlIspFhtl6BIy02iUjNg40SsVZwItR2xKISn6KdSmSg5Ztdcg62Qh861BoMN3JccNN29iwvfYMEfpBtjWws8O-2O7sxftjUcndEOesYKoSUPBmsLuuINUump_uCUDUtdBYy-nbB5vr9kh5gC3Bqytabu9ju6-udvCX5D_w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Facile synthesis of carbon-doped graphitic CN@MnO with enhanced electrochemical performance</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Shan, Qian Yuan ; Guan, Bo ; Zhu, Shi Jin ; Zhang, Hai Jun ; Zhang, Yu Xin</creator><creatorcontrib>Shan, Qian Yuan ; Guan, Bo ; Zhu, Shi Jin ; Zhang, Hai Jun ; Zhang, Yu Xin</creatorcontrib><description>Exploiting the synergistic advantages of two dimensional-two dimensional architectures, carbon-doped graphitic carbon nitride (CCN) and birnessite manganese oxides (MnO 2 ) were coupled to design a highly efficient novel carbon-doped graphitic carbon nitride@MnO 2 (CCNM) composite for supercapacitors via a facile hydrothermal method. The structural, morphological and electrochemical properties of the composite were characterized by various physicochemical techniques. These findings indicate that the existence of carbon doping can improve the rate performance of composite electrodes. The specific capacitance in a three-electrode system was 324 F g −1 at a current density of 0.2 A g −1 with capacitance retention of 80.2% after 1000 cycles. In principle, the supercapacitor performance was correlated with the hierarchical structure of the CCNM. Exploiting the synergistic advantages of two dimensional architectures, carbon-doped graphitic carbon nitride (CCN) and MnO 2 were coupled to design a highly efficient carbon-doped graphitic carbon nitride@MnO 2 (CCNM) composite for supercapacitors.</description><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/c6ra18265h</identifier><ispartof>RSC advances, 2016-09, Vol.6 (86), p.8329-83216</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Shan, Qian Yuan</creatorcontrib><creatorcontrib>Guan, Bo</creatorcontrib><creatorcontrib>Zhu, Shi Jin</creatorcontrib><creatorcontrib>Zhang, Hai Jun</creatorcontrib><creatorcontrib>Zhang, Yu Xin</creatorcontrib><title>Facile synthesis of carbon-doped graphitic CN@MnO with enhanced electrochemical performance</title><title>RSC advances</title><description>Exploiting the synergistic advantages of two dimensional-two dimensional architectures, carbon-doped graphitic carbon nitride (CCN) and birnessite manganese oxides (MnO 2 ) were coupled to design a highly efficient novel carbon-doped graphitic carbon nitride@MnO 2 (CCNM) composite for supercapacitors via a facile hydrothermal method. The structural, morphological and electrochemical properties of the composite were characterized by various physicochemical techniques. These findings indicate that the existence of carbon doping can improve the rate performance of composite electrodes. The specific capacitance in a three-electrode system was 324 F g −1 at a current density of 0.2 A g −1 with capacitance retention of 80.2% after 1000 cycles. In principle, the supercapacitor performance was correlated with the hierarchical structure of the CCNM. Exploiting the synergistic advantages of two dimensional architectures, carbon-doped graphitic carbon nitride (CCN) and MnO 2 were coupled to design a highly efficient carbon-doped graphitic carbon nitride@MnO 2 (CCNM) composite for supercapacitors.</description><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFzrEKwjAUheEgCIp2cRfyAtWk2qCbUCwu6uLmIPH21kTapNwUpG9vBcHRs_zDtxzGZlIspFhtl6BIy02iUjNg40SsVZwItR2xKISn6KdSmSg5Ztdcg62Qh861BoMN3JccNN29iwvfYMEfpBtjWws8O-2O7sxftjUcndEOesYKoSUPBmsLuuINUump_uCUDUtdBYy-nbB5vr9kh5gC3Bqytabu9ju6-udvCX5D_w</recordid><startdate>20160902</startdate><enddate>20160902</enddate><creator>Shan, Qian Yuan</creator><creator>Guan, Bo</creator><creator>Zhu, Shi Jin</creator><creator>Zhang, Hai Jun</creator><creator>Zhang, Yu Xin</creator><scope/></search><sort><creationdate>20160902</creationdate><title>Facile synthesis of carbon-doped graphitic CN@MnO with enhanced electrochemical performance</title><author>Shan, Qian Yuan ; Guan, Bo ; Zhu, Shi Jin ; Zhang, Hai Jun ; Zhang, Yu Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_c6ra18265h3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shan, Qian Yuan</creatorcontrib><creatorcontrib>Guan, Bo</creatorcontrib><creatorcontrib>Zhu, Shi Jin</creatorcontrib><creatorcontrib>Zhang, Hai Jun</creatorcontrib><creatorcontrib>Zhang, Yu Xin</creatorcontrib><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shan, Qian Yuan</au><au>Guan, Bo</au><au>Zhu, Shi Jin</au><au>Zhang, Hai Jun</au><au>Zhang, Yu Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Facile synthesis of carbon-doped graphitic CN@MnO with enhanced electrochemical performance</atitle><jtitle>RSC advances</jtitle><date>2016-09-02</date><risdate>2016</risdate><volume>6</volume><issue>86</issue><spage>8329</spage><epage>83216</epage><pages>8329-83216</pages><eissn>2046-2069</eissn><abstract>Exploiting the synergistic advantages of two dimensional-two dimensional architectures, carbon-doped graphitic carbon nitride (CCN) and birnessite manganese oxides (MnO 2 ) were coupled to design a highly efficient novel carbon-doped graphitic carbon nitride@MnO 2 (CCNM) composite for supercapacitors via a facile hydrothermal method. The structural, morphological and electrochemical properties of the composite were characterized by various physicochemical techniques. These findings indicate that the existence of carbon doping can improve the rate performance of composite electrodes. The specific capacitance in a three-electrode system was 324 F g −1 at a current density of 0.2 A g −1 with capacitance retention of 80.2% after 1000 cycles. In principle, the supercapacitor performance was correlated with the hierarchical structure of the CCNM. Exploiting the synergistic advantages of two dimensional architectures, carbon-doped graphitic carbon nitride (CCN) and MnO 2 were coupled to design a highly efficient carbon-doped graphitic carbon nitride@MnO 2 (CCNM) composite for supercapacitors.</abstract><doi>10.1039/c6ra18265h</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier EISSN: 2046-2069
ispartof RSC advances, 2016-09, Vol.6 (86), p.8329-83216
issn 2046-2069
language
recordid cdi_rsc_primary_c6ra18265h
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
title Facile synthesis of carbon-doped graphitic CN@MnO with enhanced electrochemical performance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T20%3A48%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Facile%20synthesis%20of%20carbon-doped%20graphitic%20CN@MnO%20with%20enhanced%20electrochemical%20performance&rft.jtitle=RSC%20advances&rft.au=Shan,%20Qian%20Yuan&rft.date=2016-09-02&rft.volume=6&rft.issue=86&rft.spage=8329&rft.epage=83216&rft.pages=8329-83216&rft.eissn=2046-2069&rft_id=info:doi/10.1039/c6ra18265h&rft_dat=%3Crsc%3Ec6ra18265h%3C/rsc%3E%3Cgrp_id%3Ecdi_FETCH-rsc_primary_c6ra18265h3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true