Loading…

Towards identifying the active sites on RuO(110) in catalyzing oxygen evolution

While the surface atomic structure of RuO 2 has been well studied in ultra high vacuum, much less is known about the interaction between water and RuO 2 in aqueous solution. In this work, in situ surface X-ray scattering measurements combined with density functional theory (DFT) were used to determi...

Full description

Saved in:
Bibliographic Details
Published in:Energy & environmental science 2017-12, Vol.1 (12), p.2626-2637
Main Authors: Rao, Reshma R, Kolb, Manuel J, Halck, Niels Bendtsen, Pedersen, Anders Filsøe, Mehta, Apurva, You, Hoydoo, Stoerzinger, Kelsey A, Feng, Zhenxing, Hansen, Heine A, Zhou, Hua, Giordano, Livia, Rossmeisl, Jan, Vegge, Tejs, Chorkendorff, Ib, Stephens, Ifan E. L, Shao-Horn, Yang
Format: Article
Language:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2637
container_issue 12
container_start_page 2626
container_title Energy & environmental science
container_volume 1
creator Rao, Reshma R
Kolb, Manuel J
Halck, Niels Bendtsen
Pedersen, Anders Filsøe
Mehta, Apurva
You, Hoydoo
Stoerzinger, Kelsey A
Feng, Zhenxing
Hansen, Heine A
Zhou, Hua
Giordano, Livia
Rossmeisl, Jan
Vegge, Tejs
Chorkendorff, Ib
Stephens, Ifan E. L
Shao-Horn, Yang
description While the surface atomic structure of RuO 2 has been well studied in ultra high vacuum, much less is known about the interaction between water and RuO 2 in aqueous solution. In this work, in situ surface X-ray scattering measurements combined with density functional theory (DFT) were used to determine the surface structural changes on single-crystal RuO 2 (110) as a function of potential in acidic electrolyte. The redox peaks at 0.7, 1.1 and 1.4 V vs. reversible hydrogen electrode (RHE) could be attributed to surface transitions associated with the successive deprotonation of -H 2 O on the coordinatively unsaturated Ru sites (CUS) and hydrogen adsorbed to the bridging oxygen sites. At potentials relevant to the oxygen evolution reaction (OER), an -OO species on the Ru CUS sites was detected, which was stabilized by a neighboring -OH group on the Ru CUS or bridge site. Combining potential-dependent surface structures with their energetics from DFT led to a new OER pathway, where the deprotonation of the -OH group used to stabilize -OO was found to be rate-limiting. Surface structural transitions and active sites are identified using X-ray scattering and density functional theory.
doi_str_mv 10.1039/c7ee02307c
format article
fullrecord <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_c7ee02307c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c7ee02307c</sourcerecordid><originalsourceid>FETCH-rsc_primary_c7ee02307c3</originalsourceid><addsrcrecordid>eNqFjj0LwjAURYMoWD8Wd-GNOlRfWm3oLIqbIN0lxNcaqYk0sVp_vQiKo9M9cM5wGRtxnHGM07kSRBjFKFSLBVwsF-FSYNL-cpJGXdZz7oyYRCjSgO0ye5fV0YE-kvE6b7QpwJ8IpPK6JnDakwNrYH_bTTjHKWgDSnpZNs93ah9NQQaotuXNa2sGrJPL0tHws3023qyz1TasnDpcK32RVXP4vYz_-ReEOD_7</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Towards identifying the active sites on RuO(110) in catalyzing oxygen evolution</title><source>Royal Society of Chemistry</source><creator>Rao, Reshma R ; Kolb, Manuel J ; Halck, Niels Bendtsen ; Pedersen, Anders Filsøe ; Mehta, Apurva ; You, Hoydoo ; Stoerzinger, Kelsey A ; Feng, Zhenxing ; Hansen, Heine A ; Zhou, Hua ; Giordano, Livia ; Rossmeisl, Jan ; Vegge, Tejs ; Chorkendorff, Ib ; Stephens, Ifan E. L ; Shao-Horn, Yang</creator><creatorcontrib>Rao, Reshma R ; Kolb, Manuel J ; Halck, Niels Bendtsen ; Pedersen, Anders Filsøe ; Mehta, Apurva ; You, Hoydoo ; Stoerzinger, Kelsey A ; Feng, Zhenxing ; Hansen, Heine A ; Zhou, Hua ; Giordano, Livia ; Rossmeisl, Jan ; Vegge, Tejs ; Chorkendorff, Ib ; Stephens, Ifan E. L ; Shao-Horn, Yang</creatorcontrib><description>While the surface atomic structure of RuO 2 has been well studied in ultra high vacuum, much less is known about the interaction between water and RuO 2 in aqueous solution. In this work, in situ surface X-ray scattering measurements combined with density functional theory (DFT) were used to determine the surface structural changes on single-crystal RuO 2 (110) as a function of potential in acidic electrolyte. The redox peaks at 0.7, 1.1 and 1.4 V vs. reversible hydrogen electrode (RHE) could be attributed to surface transitions associated with the successive deprotonation of -H 2 O on the coordinatively unsaturated Ru sites (CUS) and hydrogen adsorbed to the bridging oxygen sites. At potentials relevant to the oxygen evolution reaction (OER), an -OO species on the Ru CUS sites was detected, which was stabilized by a neighboring -OH group on the Ru CUS or bridge site. Combining potential-dependent surface structures with their energetics from DFT led to a new OER pathway, where the deprotonation of the -OH group used to stabilize -OO was found to be rate-limiting. Surface structural transitions and active sites are identified using X-ray scattering and density functional theory.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/c7ee02307c</identifier><ispartof>Energy &amp; environmental science, 2017-12, Vol.1 (12), p.2626-2637</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Rao, Reshma R</creatorcontrib><creatorcontrib>Kolb, Manuel J</creatorcontrib><creatorcontrib>Halck, Niels Bendtsen</creatorcontrib><creatorcontrib>Pedersen, Anders Filsøe</creatorcontrib><creatorcontrib>Mehta, Apurva</creatorcontrib><creatorcontrib>You, Hoydoo</creatorcontrib><creatorcontrib>Stoerzinger, Kelsey A</creatorcontrib><creatorcontrib>Feng, Zhenxing</creatorcontrib><creatorcontrib>Hansen, Heine A</creatorcontrib><creatorcontrib>Zhou, Hua</creatorcontrib><creatorcontrib>Giordano, Livia</creatorcontrib><creatorcontrib>Rossmeisl, Jan</creatorcontrib><creatorcontrib>Vegge, Tejs</creatorcontrib><creatorcontrib>Chorkendorff, Ib</creatorcontrib><creatorcontrib>Stephens, Ifan E. L</creatorcontrib><creatorcontrib>Shao-Horn, Yang</creatorcontrib><title>Towards identifying the active sites on RuO(110) in catalyzing oxygen evolution</title><title>Energy &amp; environmental science</title><description>While the surface atomic structure of RuO 2 has been well studied in ultra high vacuum, much less is known about the interaction between water and RuO 2 in aqueous solution. In this work, in situ surface X-ray scattering measurements combined with density functional theory (DFT) were used to determine the surface structural changes on single-crystal RuO 2 (110) as a function of potential in acidic electrolyte. The redox peaks at 0.7, 1.1 and 1.4 V vs. reversible hydrogen electrode (RHE) could be attributed to surface transitions associated with the successive deprotonation of -H 2 O on the coordinatively unsaturated Ru sites (CUS) and hydrogen adsorbed to the bridging oxygen sites. At potentials relevant to the oxygen evolution reaction (OER), an -OO species on the Ru CUS sites was detected, which was stabilized by a neighboring -OH group on the Ru CUS or bridge site. Combining potential-dependent surface structures with their energetics from DFT led to a new OER pathway, where the deprotonation of the -OH group used to stabilize -OO was found to be rate-limiting. Surface structural transitions and active sites are identified using X-ray scattering and density functional theory.</description><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFjj0LwjAURYMoWD8Wd-GNOlRfWm3oLIqbIN0lxNcaqYk0sVp_vQiKo9M9cM5wGRtxnHGM07kSRBjFKFSLBVwsF-FSYNL-cpJGXdZz7oyYRCjSgO0ye5fV0YE-kvE6b7QpwJ8IpPK6JnDakwNrYH_bTTjHKWgDSnpZNs93ah9NQQaotuXNa2sGrJPL0tHws3023qyz1TasnDpcK32RVXP4vYz_-ReEOD_7</recordid><startdate>20171206</startdate><enddate>20171206</enddate><creator>Rao, Reshma R</creator><creator>Kolb, Manuel J</creator><creator>Halck, Niels Bendtsen</creator><creator>Pedersen, Anders Filsøe</creator><creator>Mehta, Apurva</creator><creator>You, Hoydoo</creator><creator>Stoerzinger, Kelsey A</creator><creator>Feng, Zhenxing</creator><creator>Hansen, Heine A</creator><creator>Zhou, Hua</creator><creator>Giordano, Livia</creator><creator>Rossmeisl, Jan</creator><creator>Vegge, Tejs</creator><creator>Chorkendorff, Ib</creator><creator>Stephens, Ifan E. L</creator><creator>Shao-Horn, Yang</creator><scope/></search><sort><creationdate>20171206</creationdate><title>Towards identifying the active sites on RuO(110) in catalyzing oxygen evolution</title><author>Rao, Reshma R ; Kolb, Manuel J ; Halck, Niels Bendtsen ; Pedersen, Anders Filsøe ; Mehta, Apurva ; You, Hoydoo ; Stoerzinger, Kelsey A ; Feng, Zhenxing ; Hansen, Heine A ; Zhou, Hua ; Giordano, Livia ; Rossmeisl, Jan ; Vegge, Tejs ; Chorkendorff, Ib ; Stephens, Ifan E. L ; Shao-Horn, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_c7ee02307c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rao, Reshma R</creatorcontrib><creatorcontrib>Kolb, Manuel J</creatorcontrib><creatorcontrib>Halck, Niels Bendtsen</creatorcontrib><creatorcontrib>Pedersen, Anders Filsøe</creatorcontrib><creatorcontrib>Mehta, Apurva</creatorcontrib><creatorcontrib>You, Hoydoo</creatorcontrib><creatorcontrib>Stoerzinger, Kelsey A</creatorcontrib><creatorcontrib>Feng, Zhenxing</creatorcontrib><creatorcontrib>Hansen, Heine A</creatorcontrib><creatorcontrib>Zhou, Hua</creatorcontrib><creatorcontrib>Giordano, Livia</creatorcontrib><creatorcontrib>Rossmeisl, Jan</creatorcontrib><creatorcontrib>Vegge, Tejs</creatorcontrib><creatorcontrib>Chorkendorff, Ib</creatorcontrib><creatorcontrib>Stephens, Ifan E. L</creatorcontrib><creatorcontrib>Shao-Horn, Yang</creatorcontrib><jtitle>Energy &amp; environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rao, Reshma R</au><au>Kolb, Manuel J</au><au>Halck, Niels Bendtsen</au><au>Pedersen, Anders Filsøe</au><au>Mehta, Apurva</au><au>You, Hoydoo</au><au>Stoerzinger, Kelsey A</au><au>Feng, Zhenxing</au><au>Hansen, Heine A</au><au>Zhou, Hua</au><au>Giordano, Livia</au><au>Rossmeisl, Jan</au><au>Vegge, Tejs</au><au>Chorkendorff, Ib</au><au>Stephens, Ifan E. L</au><au>Shao-Horn, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards identifying the active sites on RuO(110) in catalyzing oxygen evolution</atitle><jtitle>Energy &amp; environmental science</jtitle><date>2017-12-06</date><risdate>2017</risdate><volume>1</volume><issue>12</issue><spage>2626</spage><epage>2637</epage><pages>2626-2637</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>While the surface atomic structure of RuO 2 has been well studied in ultra high vacuum, much less is known about the interaction between water and RuO 2 in aqueous solution. In this work, in situ surface X-ray scattering measurements combined with density functional theory (DFT) were used to determine the surface structural changes on single-crystal RuO 2 (110) as a function of potential in acidic electrolyte. The redox peaks at 0.7, 1.1 and 1.4 V vs. reversible hydrogen electrode (RHE) could be attributed to surface transitions associated with the successive deprotonation of -H 2 O on the coordinatively unsaturated Ru sites (CUS) and hydrogen adsorbed to the bridging oxygen sites. At potentials relevant to the oxygen evolution reaction (OER), an -OO species on the Ru CUS sites was detected, which was stabilized by a neighboring -OH group on the Ru CUS or bridge site. Combining potential-dependent surface structures with their energetics from DFT led to a new OER pathway, where the deprotonation of the -OH group used to stabilize -OO was found to be rate-limiting. Surface structural transitions and active sites are identified using X-ray scattering and density functional theory.</abstract><doi>10.1039/c7ee02307c</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1754-5692
ispartof Energy & environmental science, 2017-12, Vol.1 (12), p.2626-2637
issn 1754-5692
1754-5706
language
recordid cdi_rsc_primary_c7ee02307c
source Royal Society of Chemistry
title Towards identifying the active sites on RuO(110) in catalyzing oxygen evolution
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A02%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20identifying%20the%20active%20sites%20on%20RuO(110)%20in%20catalyzing%20oxygen%20evolution&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Rao,%20Reshma%20R&rft.date=2017-12-06&rft.volume=1&rft.issue=12&rft.spage=2626&rft.epage=2637&rft.pages=2626-2637&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/c7ee02307c&rft_dat=%3Crsc%3Ec7ee02307c%3C/rsc%3E%3Cgrp_id%3Ecdi_FETCH-rsc_primary_c7ee02307c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true