Loading…
Towards identifying the active sites on RuO(110) in catalyzing oxygen evolution
While the surface atomic structure of RuO 2 has been well studied in ultra high vacuum, much less is known about the interaction between water and RuO 2 in aqueous solution. In this work, in situ surface X-ray scattering measurements combined with density functional theory (DFT) were used to determi...
Saved in:
Published in: | Energy & environmental science 2017-12, Vol.1 (12), p.2626-2637 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 2637 |
container_issue | 12 |
container_start_page | 2626 |
container_title | Energy & environmental science |
container_volume | 1 |
creator | Rao, Reshma R Kolb, Manuel J Halck, Niels Bendtsen Pedersen, Anders Filsøe Mehta, Apurva You, Hoydoo Stoerzinger, Kelsey A Feng, Zhenxing Hansen, Heine A Zhou, Hua Giordano, Livia Rossmeisl, Jan Vegge, Tejs Chorkendorff, Ib Stephens, Ifan E. L Shao-Horn, Yang |
description | While the surface atomic structure of RuO
2
has been well studied in ultra high vacuum, much less is known about the interaction between water and RuO
2
in aqueous solution. In this work,
in situ
surface X-ray scattering measurements combined with density functional theory (DFT) were used to determine the surface structural changes on single-crystal RuO
2
(110) as a function of potential in acidic electrolyte. The redox peaks at 0.7, 1.1 and 1.4 V
vs.
reversible hydrogen electrode (RHE) could be attributed to surface transitions associated with the successive deprotonation of -H
2
O on the coordinatively unsaturated Ru sites (CUS) and hydrogen adsorbed to the bridging oxygen sites. At potentials relevant to the oxygen evolution reaction (OER), an -OO species on the Ru CUS sites was detected, which was stabilized by a neighboring -OH group on the Ru CUS or bridge site. Combining potential-dependent surface structures with their energetics from DFT led to a new OER pathway, where the deprotonation of the -OH group used to stabilize -OO was found to be rate-limiting.
Surface structural transitions and active sites are identified using X-ray scattering and density functional theory. |
doi_str_mv | 10.1039/c7ee02307c |
format | article |
fullrecord | <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_c7ee02307c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c7ee02307c</sourcerecordid><originalsourceid>FETCH-rsc_primary_c7ee02307c3</originalsourceid><addsrcrecordid>eNqFjj0LwjAURYMoWD8Wd-GNOlRfWm3oLIqbIN0lxNcaqYk0sVp_vQiKo9M9cM5wGRtxnHGM07kSRBjFKFSLBVwsF-FSYNL-cpJGXdZz7oyYRCjSgO0ye5fV0YE-kvE6b7QpwJ8IpPK6JnDakwNrYH_bTTjHKWgDSnpZNs93ah9NQQaotuXNa2sGrJPL0tHws3023qyz1TasnDpcK32RVXP4vYz_-ReEOD_7</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Towards identifying the active sites on RuO(110) in catalyzing oxygen evolution</title><source>Royal Society of Chemistry</source><creator>Rao, Reshma R ; Kolb, Manuel J ; Halck, Niels Bendtsen ; Pedersen, Anders Filsøe ; Mehta, Apurva ; You, Hoydoo ; Stoerzinger, Kelsey A ; Feng, Zhenxing ; Hansen, Heine A ; Zhou, Hua ; Giordano, Livia ; Rossmeisl, Jan ; Vegge, Tejs ; Chorkendorff, Ib ; Stephens, Ifan E. L ; Shao-Horn, Yang</creator><creatorcontrib>Rao, Reshma R ; Kolb, Manuel J ; Halck, Niels Bendtsen ; Pedersen, Anders Filsøe ; Mehta, Apurva ; You, Hoydoo ; Stoerzinger, Kelsey A ; Feng, Zhenxing ; Hansen, Heine A ; Zhou, Hua ; Giordano, Livia ; Rossmeisl, Jan ; Vegge, Tejs ; Chorkendorff, Ib ; Stephens, Ifan E. L ; Shao-Horn, Yang</creatorcontrib><description>While the surface atomic structure of RuO
2
has been well studied in ultra high vacuum, much less is known about the interaction between water and RuO
2
in aqueous solution. In this work,
in situ
surface X-ray scattering measurements combined with density functional theory (DFT) were used to determine the surface structural changes on single-crystal RuO
2
(110) as a function of potential in acidic electrolyte. The redox peaks at 0.7, 1.1 and 1.4 V
vs.
reversible hydrogen electrode (RHE) could be attributed to surface transitions associated with the successive deprotonation of -H
2
O on the coordinatively unsaturated Ru sites (CUS) and hydrogen adsorbed to the bridging oxygen sites. At potentials relevant to the oxygen evolution reaction (OER), an -OO species on the Ru CUS sites was detected, which was stabilized by a neighboring -OH group on the Ru CUS or bridge site. Combining potential-dependent surface structures with their energetics from DFT led to a new OER pathway, where the deprotonation of the -OH group used to stabilize -OO was found to be rate-limiting.
Surface structural transitions and active sites are identified using X-ray scattering and density functional theory.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/c7ee02307c</identifier><ispartof>Energy & environmental science, 2017-12, Vol.1 (12), p.2626-2637</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Rao, Reshma R</creatorcontrib><creatorcontrib>Kolb, Manuel J</creatorcontrib><creatorcontrib>Halck, Niels Bendtsen</creatorcontrib><creatorcontrib>Pedersen, Anders Filsøe</creatorcontrib><creatorcontrib>Mehta, Apurva</creatorcontrib><creatorcontrib>You, Hoydoo</creatorcontrib><creatorcontrib>Stoerzinger, Kelsey A</creatorcontrib><creatorcontrib>Feng, Zhenxing</creatorcontrib><creatorcontrib>Hansen, Heine A</creatorcontrib><creatorcontrib>Zhou, Hua</creatorcontrib><creatorcontrib>Giordano, Livia</creatorcontrib><creatorcontrib>Rossmeisl, Jan</creatorcontrib><creatorcontrib>Vegge, Tejs</creatorcontrib><creatorcontrib>Chorkendorff, Ib</creatorcontrib><creatorcontrib>Stephens, Ifan E. L</creatorcontrib><creatorcontrib>Shao-Horn, Yang</creatorcontrib><title>Towards identifying the active sites on RuO(110) in catalyzing oxygen evolution</title><title>Energy & environmental science</title><description>While the surface atomic structure of RuO
2
has been well studied in ultra high vacuum, much less is known about the interaction between water and RuO
2
in aqueous solution. In this work,
in situ
surface X-ray scattering measurements combined with density functional theory (DFT) were used to determine the surface structural changes on single-crystal RuO
2
(110) as a function of potential in acidic electrolyte. The redox peaks at 0.7, 1.1 and 1.4 V
vs.
reversible hydrogen electrode (RHE) could be attributed to surface transitions associated with the successive deprotonation of -H
2
O on the coordinatively unsaturated Ru sites (CUS) and hydrogen adsorbed to the bridging oxygen sites. At potentials relevant to the oxygen evolution reaction (OER), an -OO species on the Ru CUS sites was detected, which was stabilized by a neighboring -OH group on the Ru CUS or bridge site. Combining potential-dependent surface structures with their energetics from DFT led to a new OER pathway, where the deprotonation of the -OH group used to stabilize -OO was found to be rate-limiting.
Surface structural transitions and active sites are identified using X-ray scattering and density functional theory.</description><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFjj0LwjAURYMoWD8Wd-GNOlRfWm3oLIqbIN0lxNcaqYk0sVp_vQiKo9M9cM5wGRtxnHGM07kSRBjFKFSLBVwsF-FSYNL-cpJGXdZz7oyYRCjSgO0ye5fV0YE-kvE6b7QpwJ8IpPK6JnDakwNrYH_bTTjHKWgDSnpZNs93ah9NQQaotuXNa2sGrJPL0tHws3023qyz1TasnDpcK32RVXP4vYz_-ReEOD_7</recordid><startdate>20171206</startdate><enddate>20171206</enddate><creator>Rao, Reshma R</creator><creator>Kolb, Manuel J</creator><creator>Halck, Niels Bendtsen</creator><creator>Pedersen, Anders Filsøe</creator><creator>Mehta, Apurva</creator><creator>You, Hoydoo</creator><creator>Stoerzinger, Kelsey A</creator><creator>Feng, Zhenxing</creator><creator>Hansen, Heine A</creator><creator>Zhou, Hua</creator><creator>Giordano, Livia</creator><creator>Rossmeisl, Jan</creator><creator>Vegge, Tejs</creator><creator>Chorkendorff, Ib</creator><creator>Stephens, Ifan E. L</creator><creator>Shao-Horn, Yang</creator><scope/></search><sort><creationdate>20171206</creationdate><title>Towards identifying the active sites on RuO(110) in catalyzing oxygen evolution</title><author>Rao, Reshma R ; Kolb, Manuel J ; Halck, Niels Bendtsen ; Pedersen, Anders Filsøe ; Mehta, Apurva ; You, Hoydoo ; Stoerzinger, Kelsey A ; Feng, Zhenxing ; Hansen, Heine A ; Zhou, Hua ; Giordano, Livia ; Rossmeisl, Jan ; Vegge, Tejs ; Chorkendorff, Ib ; Stephens, Ifan E. L ; Shao-Horn, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_c7ee02307c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rao, Reshma R</creatorcontrib><creatorcontrib>Kolb, Manuel J</creatorcontrib><creatorcontrib>Halck, Niels Bendtsen</creatorcontrib><creatorcontrib>Pedersen, Anders Filsøe</creatorcontrib><creatorcontrib>Mehta, Apurva</creatorcontrib><creatorcontrib>You, Hoydoo</creatorcontrib><creatorcontrib>Stoerzinger, Kelsey A</creatorcontrib><creatorcontrib>Feng, Zhenxing</creatorcontrib><creatorcontrib>Hansen, Heine A</creatorcontrib><creatorcontrib>Zhou, Hua</creatorcontrib><creatorcontrib>Giordano, Livia</creatorcontrib><creatorcontrib>Rossmeisl, Jan</creatorcontrib><creatorcontrib>Vegge, Tejs</creatorcontrib><creatorcontrib>Chorkendorff, Ib</creatorcontrib><creatorcontrib>Stephens, Ifan E. L</creatorcontrib><creatorcontrib>Shao-Horn, Yang</creatorcontrib><jtitle>Energy & environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rao, Reshma R</au><au>Kolb, Manuel J</au><au>Halck, Niels Bendtsen</au><au>Pedersen, Anders Filsøe</au><au>Mehta, Apurva</au><au>You, Hoydoo</au><au>Stoerzinger, Kelsey A</au><au>Feng, Zhenxing</au><au>Hansen, Heine A</au><au>Zhou, Hua</au><au>Giordano, Livia</au><au>Rossmeisl, Jan</au><au>Vegge, Tejs</au><au>Chorkendorff, Ib</au><au>Stephens, Ifan E. L</au><au>Shao-Horn, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards identifying the active sites on RuO(110) in catalyzing oxygen evolution</atitle><jtitle>Energy & environmental science</jtitle><date>2017-12-06</date><risdate>2017</risdate><volume>1</volume><issue>12</issue><spage>2626</spage><epage>2637</epage><pages>2626-2637</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>While the surface atomic structure of RuO
2
has been well studied in ultra high vacuum, much less is known about the interaction between water and RuO
2
in aqueous solution. In this work,
in situ
surface X-ray scattering measurements combined with density functional theory (DFT) were used to determine the surface structural changes on single-crystal RuO
2
(110) as a function of potential in acidic electrolyte. The redox peaks at 0.7, 1.1 and 1.4 V
vs.
reversible hydrogen electrode (RHE) could be attributed to surface transitions associated with the successive deprotonation of -H
2
O on the coordinatively unsaturated Ru sites (CUS) and hydrogen adsorbed to the bridging oxygen sites. At potentials relevant to the oxygen evolution reaction (OER), an -OO species on the Ru CUS sites was detected, which was stabilized by a neighboring -OH group on the Ru CUS or bridge site. Combining potential-dependent surface structures with their energetics from DFT led to a new OER pathway, where the deprotonation of the -OH group used to stabilize -OO was found to be rate-limiting.
Surface structural transitions and active sites are identified using X-ray scattering and density functional theory.</abstract><doi>10.1039/c7ee02307c</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-5692 |
ispartof | Energy & environmental science, 2017-12, Vol.1 (12), p.2626-2637 |
issn | 1754-5692 1754-5706 |
language | |
recordid | cdi_rsc_primary_c7ee02307c |
source | Royal Society of Chemistry |
title | Towards identifying the active sites on RuO(110) in catalyzing oxygen evolution |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A02%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20identifying%20the%20active%20sites%20on%20RuO(110)%20in%20catalyzing%20oxygen%20evolution&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Rao,%20Reshma%20R&rft.date=2017-12-06&rft.volume=1&rft.issue=12&rft.spage=2626&rft.epage=2637&rft.pages=2626-2637&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/c7ee02307c&rft_dat=%3Crsc%3Ec7ee02307c%3C/rsc%3E%3Cgrp_id%3Ecdi_FETCH-rsc_primary_c7ee02307c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |