Loading…

Tomographic magnetic particle imaging of cancer targeted nanoparticlesElectronic supplementary information (ESI) available. See DOI: 10.1039/c7nr05502a

Magnetic Particle Imaging (MPI) is an emerging, whole body biomedical imaging technique, with sub-millimeter spatial resolution and high sensitivity to a biocompatible contrast agent consisting of an iron oxide nanoparticle core and a biofunctionalized shell. Successful application of MPI for imagin...

Full description

Saved in:
Bibliographic Details
Main Authors: Arami, Hamed, Teeman, Eric, Troksa, Alyssa, Bradshaw, Haydin, Saatchi, Katayoun, Tomitaka, Asahi, Gambhir, Sanjiv Sam, Häfeli, Urs O, Liggitt, Denny, Krishnan, Kannan M
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1873
container_issue 47
container_start_page 18723
container_title
container_volume 9
creator Arami, Hamed
Teeman, Eric
Troksa, Alyssa
Bradshaw, Haydin
Saatchi, Katayoun
Tomitaka, Asahi
Gambhir, Sanjiv Sam
Häfeli, Urs O
Liggitt, Denny
Krishnan, Kannan M
description Magnetic Particle Imaging (MPI) is an emerging, whole body biomedical imaging technique, with sub-millimeter spatial resolution and high sensitivity to a biocompatible contrast agent consisting of an iron oxide nanoparticle core and a biofunctionalized shell. Successful application of MPI for imaging of cancer depends on the nanoparticles (NPs) accumulating at tumors at sufficient levels relative to other sites. NPs' physiochemical properties such as size, crystallographic structure and uniformity, surface coating, stability, blood circulation time and magnetization determine the efficacy of their tumor accumulation and MPI signal generation. Here, we address these criteria by presenting strategies for the synthesis and surface functionalization of efficient MPI tracers, that can target a typical murine brain cancer model and generate three dimensional images of these tumors with very high signal-to-noise ratios (SNR). Our results showed high contrast agent sensitivities that enabled us to detect 1.1 ng of iron (SNR ∼ 3.9) and enhance the spatial resolution to about 600 μm. The biodistribution of these NPs was also studied using near-infrared fluorescence (NIRF) and single-photon emission computed tomography (SPECT) imaging. NPs were mainly accumulated in the liver and spleen and did not show any renal clearance. This first pre-clinical study of cancer targeted NPs imaged using a tomographic MPI system in an animal model paves the way to explore new nanomedicine strategies for cancer diagnosis and therapy, using clinically safe magnetic iron oxide nanoparticles and MPI. The first study of Magnetic Particle Imaging (MPI) for tomographic imaging of cancer targeted iron oxide nanoparticles.
doi_str_mv 10.1039/c7nr05502a
format article
fullrecord <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_c7nr05502a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c7nr05502a</sourcerecordid><originalsourceid>FETCH-rsc_primary_c7nr05502a3</originalsourceid><addsrcrecordid>eNqFjjtPAzEQhC0EEuHR0CMtHRQJzjm5KLRwiFQUSX9anL3DyLe21gYpv4S_iwseBRJUM5r5RhqlzqZ6MtVmeW0XLHo-1xXuqVGlZ3pszKLa__b17FAdpfSidb00tRmp900YQi8Yn52FAXumXExEKeIJXIkc9xA6sMiWBDJKT5m2wMjhi0uNJ5slcNmm1xg9DcSF3IHjLsiA2QWGy2a9ugJ8Q-fxydME1kRw97i6gd_3T9RBhz7R6aceq_P7ZnP7MJZk2yjll-zaH9z831_81bdx25kPTRpkZA</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Tomographic magnetic particle imaging of cancer targeted nanoparticlesElectronic supplementary information (ESI) available. See DOI: 10.1039/c7nr05502a</title><source>Royal Society of Chemistry</source><creator>Arami, Hamed ; Teeman, Eric ; Troksa, Alyssa ; Bradshaw, Haydin ; Saatchi, Katayoun ; Tomitaka, Asahi ; Gambhir, Sanjiv Sam ; Häfeli, Urs O ; Liggitt, Denny ; Krishnan, Kannan M</creator><creatorcontrib>Arami, Hamed ; Teeman, Eric ; Troksa, Alyssa ; Bradshaw, Haydin ; Saatchi, Katayoun ; Tomitaka, Asahi ; Gambhir, Sanjiv Sam ; Häfeli, Urs O ; Liggitt, Denny ; Krishnan, Kannan M</creatorcontrib><description>Magnetic Particle Imaging (MPI) is an emerging, whole body biomedical imaging technique, with sub-millimeter spatial resolution and high sensitivity to a biocompatible contrast agent consisting of an iron oxide nanoparticle core and a biofunctionalized shell. Successful application of MPI for imaging of cancer depends on the nanoparticles (NPs) accumulating at tumors at sufficient levels relative to other sites. NPs' physiochemical properties such as size, crystallographic structure and uniformity, surface coating, stability, blood circulation time and magnetization determine the efficacy of their tumor accumulation and MPI signal generation. Here, we address these criteria by presenting strategies for the synthesis and surface functionalization of efficient MPI tracers, that can target a typical murine brain cancer model and generate three dimensional images of these tumors with very high signal-to-noise ratios (SNR). Our results showed high contrast agent sensitivities that enabled us to detect 1.1 ng of iron (SNR ∼ 3.9) and enhance the spatial resolution to about 600 μm. The biodistribution of these NPs was also studied using near-infrared fluorescence (NIRF) and single-photon emission computed tomography (SPECT) imaging. NPs were mainly accumulated in the liver and spleen and did not show any renal clearance. This first pre-clinical study of cancer targeted NPs imaged using a tomographic MPI system in an animal model paves the way to explore new nanomedicine strategies for cancer diagnosis and therapy, using clinically safe magnetic iron oxide nanoparticles and MPI. The first study of Magnetic Particle Imaging (MPI) for tomographic imaging of cancer targeted iron oxide nanoparticles.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c7nr05502a</identifier><language>eng</language><creationdate>2017-12</creationdate><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Arami, Hamed</creatorcontrib><creatorcontrib>Teeman, Eric</creatorcontrib><creatorcontrib>Troksa, Alyssa</creatorcontrib><creatorcontrib>Bradshaw, Haydin</creatorcontrib><creatorcontrib>Saatchi, Katayoun</creatorcontrib><creatorcontrib>Tomitaka, Asahi</creatorcontrib><creatorcontrib>Gambhir, Sanjiv Sam</creatorcontrib><creatorcontrib>Häfeli, Urs O</creatorcontrib><creatorcontrib>Liggitt, Denny</creatorcontrib><creatorcontrib>Krishnan, Kannan M</creatorcontrib><title>Tomographic magnetic particle imaging of cancer targeted nanoparticlesElectronic supplementary information (ESI) available. See DOI: 10.1039/c7nr05502a</title><description>Magnetic Particle Imaging (MPI) is an emerging, whole body biomedical imaging technique, with sub-millimeter spatial resolution and high sensitivity to a biocompatible contrast agent consisting of an iron oxide nanoparticle core and a biofunctionalized shell. Successful application of MPI for imaging of cancer depends on the nanoparticles (NPs) accumulating at tumors at sufficient levels relative to other sites. NPs' physiochemical properties such as size, crystallographic structure and uniformity, surface coating, stability, blood circulation time and magnetization determine the efficacy of their tumor accumulation and MPI signal generation. Here, we address these criteria by presenting strategies for the synthesis and surface functionalization of efficient MPI tracers, that can target a typical murine brain cancer model and generate three dimensional images of these tumors with very high signal-to-noise ratios (SNR). Our results showed high contrast agent sensitivities that enabled us to detect 1.1 ng of iron (SNR ∼ 3.9) and enhance the spatial resolution to about 600 μm. The biodistribution of these NPs was also studied using near-infrared fluorescence (NIRF) and single-photon emission computed tomography (SPECT) imaging. NPs were mainly accumulated in the liver and spleen and did not show any renal clearance. This first pre-clinical study of cancer targeted NPs imaged using a tomographic MPI system in an animal model paves the way to explore new nanomedicine strategies for cancer diagnosis and therapy, using clinically safe magnetic iron oxide nanoparticles and MPI. The first study of Magnetic Particle Imaging (MPI) for tomographic imaging of cancer targeted iron oxide nanoparticles.</description><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFjjtPAzEQhC0EEuHR0CMtHRQJzjm5KLRwiFQUSX9anL3DyLe21gYpv4S_iwseBRJUM5r5RhqlzqZ6MtVmeW0XLHo-1xXuqVGlZ3pszKLa__b17FAdpfSidb00tRmp900YQi8Yn52FAXumXExEKeIJXIkc9xA6sMiWBDJKT5m2wMjhi0uNJ5slcNmm1xg9DcSF3IHjLsiA2QWGy2a9ugJ8Q-fxydME1kRw97i6gd_3T9RBhz7R6aceq_P7ZnP7MJZk2yjll-zaH9z831_81bdx25kPTRpkZA</recordid><startdate>20171207</startdate><enddate>20171207</enddate><creator>Arami, Hamed</creator><creator>Teeman, Eric</creator><creator>Troksa, Alyssa</creator><creator>Bradshaw, Haydin</creator><creator>Saatchi, Katayoun</creator><creator>Tomitaka, Asahi</creator><creator>Gambhir, Sanjiv Sam</creator><creator>Häfeli, Urs O</creator><creator>Liggitt, Denny</creator><creator>Krishnan, Kannan M</creator><scope/></search><sort><creationdate>20171207</creationdate><title>Tomographic magnetic particle imaging of cancer targeted nanoparticlesElectronic supplementary information (ESI) available. See DOI: 10.1039/c7nr05502a</title><author>Arami, Hamed ; Teeman, Eric ; Troksa, Alyssa ; Bradshaw, Haydin ; Saatchi, Katayoun ; Tomitaka, Asahi ; Gambhir, Sanjiv Sam ; Häfeli, Urs O ; Liggitt, Denny ; Krishnan, Kannan M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_c7nr05502a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Arami, Hamed</creatorcontrib><creatorcontrib>Teeman, Eric</creatorcontrib><creatorcontrib>Troksa, Alyssa</creatorcontrib><creatorcontrib>Bradshaw, Haydin</creatorcontrib><creatorcontrib>Saatchi, Katayoun</creatorcontrib><creatorcontrib>Tomitaka, Asahi</creatorcontrib><creatorcontrib>Gambhir, Sanjiv Sam</creatorcontrib><creatorcontrib>Häfeli, Urs O</creatorcontrib><creatorcontrib>Liggitt, Denny</creatorcontrib><creatorcontrib>Krishnan, Kannan M</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arami, Hamed</au><au>Teeman, Eric</au><au>Troksa, Alyssa</au><au>Bradshaw, Haydin</au><au>Saatchi, Katayoun</au><au>Tomitaka, Asahi</au><au>Gambhir, Sanjiv Sam</au><au>Häfeli, Urs O</au><au>Liggitt, Denny</au><au>Krishnan, Kannan M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tomographic magnetic particle imaging of cancer targeted nanoparticlesElectronic supplementary information (ESI) available. See DOI: 10.1039/c7nr05502a</atitle><date>2017-12-07</date><risdate>2017</risdate><volume>9</volume><issue>47</issue><spage>18723</spage><epage>1873</epage><pages>18723-1873</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Magnetic Particle Imaging (MPI) is an emerging, whole body biomedical imaging technique, with sub-millimeter spatial resolution and high sensitivity to a biocompatible contrast agent consisting of an iron oxide nanoparticle core and a biofunctionalized shell. Successful application of MPI for imaging of cancer depends on the nanoparticles (NPs) accumulating at tumors at sufficient levels relative to other sites. NPs' physiochemical properties such as size, crystallographic structure and uniformity, surface coating, stability, blood circulation time and magnetization determine the efficacy of their tumor accumulation and MPI signal generation. Here, we address these criteria by presenting strategies for the synthesis and surface functionalization of efficient MPI tracers, that can target a typical murine brain cancer model and generate three dimensional images of these tumors with very high signal-to-noise ratios (SNR). Our results showed high contrast agent sensitivities that enabled us to detect 1.1 ng of iron (SNR ∼ 3.9) and enhance the spatial resolution to about 600 μm. The biodistribution of these NPs was also studied using near-infrared fluorescence (NIRF) and single-photon emission computed tomography (SPECT) imaging. NPs were mainly accumulated in the liver and spleen and did not show any renal clearance. This first pre-clinical study of cancer targeted NPs imaged using a tomographic MPI system in an animal model paves the way to explore new nanomedicine strategies for cancer diagnosis and therapy, using clinically safe magnetic iron oxide nanoparticles and MPI. The first study of Magnetic Particle Imaging (MPI) for tomographic imaging of cancer targeted iron oxide nanoparticles.</abstract><doi>10.1039/c7nr05502a</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof
issn 2040-3364
2040-3372
language eng
recordid cdi_rsc_primary_c7nr05502a
source Royal Society of Chemistry
title Tomographic magnetic particle imaging of cancer targeted nanoparticlesElectronic supplementary information (ESI) available. See DOI: 10.1039/c7nr05502a
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A56%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tomographic%20magnetic%20particle%20imaging%20of%20cancer%20targeted%20nanoparticlesElectronic%20supplementary%20information%20(ESI)%20available.%20See%20DOI:%2010.1039/c7nr05502a&rft.au=Arami,%20Hamed&rft.date=2017-12-07&rft.volume=9&rft.issue=47&rft.spage=18723&rft.epage=1873&rft.pages=18723-1873&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c7nr05502a&rft_dat=%3Crsc%3Ec7nr05502a%3C/rsc%3E%3Cgrp_id%3Ecdi_FETCH-rsc_primary_c7nr05502a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true