Loading…

Flexible small-channel thin-film transistors by electrohydrodynamic lithographyElectronic supplementary information (ESI) available. See DOI: 10.1039/c7nr06075k

Small-channel organic thin-film transistors (OTFTs) are an essential component of microelectronic devices. With the advent of flexible electronics, the fabrication of OTFTs still faces numerous hurdles in the realization of highly-functional, devices of commercial value. Herein, a concise and effici...

Full description

Saved in:
Bibliographic Details
Main Authors: Ding, Yajiang, Zhu, Chen, Liu, Jianpeng, Duan, Yongqing, Yi, Zhengran, Xiao, Jian, Wang, Shuai, Huang, YongAn, Yin, Zhouping
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1957
container_issue 48
container_start_page 195
container_title
container_volume 9
creator Ding, Yajiang
Zhu, Chen
Liu, Jianpeng
Duan, Yongqing
Yi, Zhengran
Xiao, Jian
Wang, Shuai
Huang, YongAn
Yin, Zhouping
description Small-channel organic thin-film transistors (OTFTs) are an essential component of microelectronic devices. With the advent of flexible electronics, the fabrication of OTFTs still faces numerous hurdles in the realization of highly-functional, devices of commercial value. Herein, a concise and efficient procedure is proposed for the fabrication of flexible, small-channel organic thin-film transistor (OTFT) arrays on large-area substrates that circumvents the use of photolithography. By employing a low-cost and high-resolution mechano-electrospinning technology, large-scale micro/nanofiber-based patterns can be digitally printed on flexible substrates (Si wafer or plastic), which can act as the channel mask of TFT instead of a photolithography reticle. The dimensions of the micro/nanochannel can be manipulated by tuning the processing parameters such as the nozzle-to-substrate distance, applied voltage, and fluid supply. The devices exhibit excellent electrical properties with high mobilities (∼0.62 cm 2 V −1 s −1 ) and high on/off current ratios (∼2.47 × 10 6 ), and they are able to maintain stability upon being bent from 25 mm to 2.75 mm (bending radius) over 120 testing cycles. This electrohydrodynamic lithography-based approach is a digital, programmable, and reliable alternative for easily fabricating flexible, small-channel OTFTs, which can be integrated into flexible and wearable devices. A programmable, photolithography-free and cost-effective procedure for the fabrication of high performance OTFT arrays on ultrathin flexible substrates is reported.
doi_str_mv 10.1039/c7nr06075k
format article
fullrecord <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_c7nr06075k</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c7nr06075k</sourcerecordid><originalsourceid>FETCH-rsc_primary_c7nr06075k3</originalsourceid><addsrcrecordid>eNqFT7FOwzAUtBBIlMLCjvTYYEhx65KorJCKTgxlj14dBxue7cg2CP8Nn9pIIBiQ2ulOd6c7HWPnUz6ZcrG4kZULvOTV7dsBG834nBdCVLPDX17Oj9lJjK-clwtRihH7WpL6NBtSEC0SFVKjc4ogaeOKzpCFFNBFE5MPETYZFCmZgte5Db7NDq2RQCZp_xKw17n-tt2gxve-J2WVSxgyGNf5YDEZ7-CqXq-uAT_QEA7TE1grBQ9Pqzv4_-OUHXVIUZ394JhdLOvn-8ciRNn0wdihvPmLizG73OU3fduJfR1bCa5owQ</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Flexible small-channel thin-film transistors by electrohydrodynamic lithographyElectronic supplementary information (ESI) available. See DOI: 10.1039/c7nr06075k</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Ding, Yajiang ; Zhu, Chen ; Liu, Jianpeng ; Duan, Yongqing ; Yi, Zhengran ; Xiao, Jian ; Wang, Shuai ; Huang, YongAn ; Yin, Zhouping</creator><creatorcontrib>Ding, Yajiang ; Zhu, Chen ; Liu, Jianpeng ; Duan, Yongqing ; Yi, Zhengran ; Xiao, Jian ; Wang, Shuai ; Huang, YongAn ; Yin, Zhouping</creatorcontrib><description>Small-channel organic thin-film transistors (OTFTs) are an essential component of microelectronic devices. With the advent of flexible electronics, the fabrication of OTFTs still faces numerous hurdles in the realization of highly-functional, devices of commercial value. Herein, a concise and efficient procedure is proposed for the fabrication of flexible, small-channel organic thin-film transistor (OTFT) arrays on large-area substrates that circumvents the use of photolithography. By employing a low-cost and high-resolution mechano-electrospinning technology, large-scale micro/nanofiber-based patterns can be digitally printed on flexible substrates (Si wafer or plastic), which can act as the channel mask of TFT instead of a photolithography reticle. The dimensions of the micro/nanochannel can be manipulated by tuning the processing parameters such as the nozzle-to-substrate distance, applied voltage, and fluid supply. The devices exhibit excellent electrical properties with high mobilities (∼0.62 cm 2 V −1 s −1 ) and high on/off current ratios (∼2.47 × 10 6 ), and they are able to maintain stability upon being bent from 25 mm to 2.75 mm (bending radius) over 120 testing cycles. This electrohydrodynamic lithography-based approach is a digital, programmable, and reliable alternative for easily fabricating flexible, small-channel OTFTs, which can be integrated into flexible and wearable devices. A programmable, photolithography-free and cost-effective procedure for the fabrication of high performance OTFT arrays on ultrathin flexible substrates is reported.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c7nr06075k</identifier><language>eng</language><creationdate>2017-12</creationdate><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ding, Yajiang</creatorcontrib><creatorcontrib>Zhu, Chen</creatorcontrib><creatorcontrib>Liu, Jianpeng</creatorcontrib><creatorcontrib>Duan, Yongqing</creatorcontrib><creatorcontrib>Yi, Zhengran</creatorcontrib><creatorcontrib>Xiao, Jian</creatorcontrib><creatorcontrib>Wang, Shuai</creatorcontrib><creatorcontrib>Huang, YongAn</creatorcontrib><creatorcontrib>Yin, Zhouping</creatorcontrib><title>Flexible small-channel thin-film transistors by electrohydrodynamic lithographyElectronic supplementary information (ESI) available. See DOI: 10.1039/c7nr06075k</title><description>Small-channel organic thin-film transistors (OTFTs) are an essential component of microelectronic devices. With the advent of flexible electronics, the fabrication of OTFTs still faces numerous hurdles in the realization of highly-functional, devices of commercial value. Herein, a concise and efficient procedure is proposed for the fabrication of flexible, small-channel organic thin-film transistor (OTFT) arrays on large-area substrates that circumvents the use of photolithography. By employing a low-cost and high-resolution mechano-electrospinning technology, large-scale micro/nanofiber-based patterns can be digitally printed on flexible substrates (Si wafer or plastic), which can act as the channel mask of TFT instead of a photolithography reticle. The dimensions of the micro/nanochannel can be manipulated by tuning the processing parameters such as the nozzle-to-substrate distance, applied voltage, and fluid supply. The devices exhibit excellent electrical properties with high mobilities (∼0.62 cm 2 V −1 s −1 ) and high on/off current ratios (∼2.47 × 10 6 ), and they are able to maintain stability upon being bent from 25 mm to 2.75 mm (bending radius) over 120 testing cycles. This electrohydrodynamic lithography-based approach is a digital, programmable, and reliable alternative for easily fabricating flexible, small-channel OTFTs, which can be integrated into flexible and wearable devices. A programmable, photolithography-free and cost-effective procedure for the fabrication of high performance OTFT arrays on ultrathin flexible substrates is reported.</description><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFT7FOwzAUtBBIlMLCjvTYYEhx65KorJCKTgxlj14dBxue7cg2CP8Nn9pIIBiQ2ulOd6c7HWPnUz6ZcrG4kZULvOTV7dsBG834nBdCVLPDX17Oj9lJjK-clwtRihH7WpL6NBtSEC0SFVKjc4ogaeOKzpCFFNBFE5MPETYZFCmZgte5Db7NDq2RQCZp_xKw17n-tt2gxve-J2WVSxgyGNf5YDEZ7-CqXq-uAT_QEA7TE1grBQ9Pqzv4_-OUHXVIUZ394JhdLOvn-8ciRNn0wdihvPmLizG73OU3fduJfR1bCa5owQ</recordid><startdate>20171214</startdate><enddate>20171214</enddate><creator>Ding, Yajiang</creator><creator>Zhu, Chen</creator><creator>Liu, Jianpeng</creator><creator>Duan, Yongqing</creator><creator>Yi, Zhengran</creator><creator>Xiao, Jian</creator><creator>Wang, Shuai</creator><creator>Huang, YongAn</creator><creator>Yin, Zhouping</creator><scope/></search><sort><creationdate>20171214</creationdate><title>Flexible small-channel thin-film transistors by electrohydrodynamic lithographyElectronic supplementary information (ESI) available. See DOI: 10.1039/c7nr06075k</title><author>Ding, Yajiang ; Zhu, Chen ; Liu, Jianpeng ; Duan, Yongqing ; Yi, Zhengran ; Xiao, Jian ; Wang, Shuai ; Huang, YongAn ; Yin, Zhouping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_c7nr06075k3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Ding, Yajiang</creatorcontrib><creatorcontrib>Zhu, Chen</creatorcontrib><creatorcontrib>Liu, Jianpeng</creatorcontrib><creatorcontrib>Duan, Yongqing</creatorcontrib><creatorcontrib>Yi, Zhengran</creatorcontrib><creatorcontrib>Xiao, Jian</creatorcontrib><creatorcontrib>Wang, Shuai</creatorcontrib><creatorcontrib>Huang, YongAn</creatorcontrib><creatorcontrib>Yin, Zhouping</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Yajiang</au><au>Zhu, Chen</au><au>Liu, Jianpeng</au><au>Duan, Yongqing</au><au>Yi, Zhengran</au><au>Xiao, Jian</au><au>Wang, Shuai</au><au>Huang, YongAn</au><au>Yin, Zhouping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flexible small-channel thin-film transistors by electrohydrodynamic lithographyElectronic supplementary information (ESI) available. See DOI: 10.1039/c7nr06075k</atitle><date>2017-12-14</date><risdate>2017</risdate><volume>9</volume><issue>48</issue><spage>195</spage><epage>1957</epage><pages>195-1957</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Small-channel organic thin-film transistors (OTFTs) are an essential component of microelectronic devices. With the advent of flexible electronics, the fabrication of OTFTs still faces numerous hurdles in the realization of highly-functional, devices of commercial value. Herein, a concise and efficient procedure is proposed for the fabrication of flexible, small-channel organic thin-film transistor (OTFT) arrays on large-area substrates that circumvents the use of photolithography. By employing a low-cost and high-resolution mechano-electrospinning technology, large-scale micro/nanofiber-based patterns can be digitally printed on flexible substrates (Si wafer or plastic), which can act as the channel mask of TFT instead of a photolithography reticle. The dimensions of the micro/nanochannel can be manipulated by tuning the processing parameters such as the nozzle-to-substrate distance, applied voltage, and fluid supply. The devices exhibit excellent electrical properties with high mobilities (∼0.62 cm 2 V −1 s −1 ) and high on/off current ratios (∼2.47 × 10 6 ), and they are able to maintain stability upon being bent from 25 mm to 2.75 mm (bending radius) over 120 testing cycles. This electrohydrodynamic lithography-based approach is a digital, programmable, and reliable alternative for easily fabricating flexible, small-channel OTFTs, which can be integrated into flexible and wearable devices. A programmable, photolithography-free and cost-effective procedure for the fabrication of high performance OTFT arrays on ultrathin flexible substrates is reported.</abstract><doi>10.1039/c7nr06075k</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof
issn 2040-3364
2040-3372
language eng
recordid cdi_rsc_primary_c7nr06075k
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
title Flexible small-channel thin-film transistors by electrohydrodynamic lithographyElectronic supplementary information (ESI) available. See DOI: 10.1039/c7nr06075k
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A20%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flexible%20small-channel%20thin-film%20transistors%20by%20electrohydrodynamic%20lithographyElectronic%20supplementary%20information%20(ESI)%20available.%20See%20DOI:%2010.1039/c7nr06075k&rft.au=Ding,%20Yajiang&rft.date=2017-12-14&rft.volume=9&rft.issue=48&rft.spage=195&rft.epage=1957&rft.pages=195-1957&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c7nr06075k&rft_dat=%3Crsc%3Ec7nr06075k%3C/rsc%3E%3Cgrp_id%3Ecdi_FETCH-rsc_primary_c7nr06075k3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true