Loading…

Supramolecular assembly affording a ratiometric two-photon fluorescent nanoprobe for quantitative detection and bioimaging

Fluorescence quantitative analyses for vital biomolecules are in great demand in biomedical science owing to their unique detection advantages with rapid, sensitive, non-damaging and specific identification. However, available fluorescence strategies for quantitative detection are usually hard to de...

Full description

Saved in:
Bibliographic Details
Published in:Chemical science (Cambridge) 2017-12, Vol.8 (12), p.8214-822
Main Authors: Wang, Peng, Zhang, Cheng, Liu, Hong-Wen, Xiong, Mengyi, Yin, Sheng-Yan, Yang, Yue, Hu, Xiao-Xiao, Yin, Xia, Zhang, Xiao-Bing, Tan, Weihong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Fluorescence quantitative analyses for vital biomolecules are in great demand in biomedical science owing to their unique detection advantages with rapid, sensitive, non-damaging and specific identification. However, available fluorescence strategies for quantitative detection are usually hard to design and achieve. Inspired by supramolecular chemistry, a two-photon-excited fluorescent supramolecular nanoplatform ( TPSNP ) was designed for quantitative analysis with three parts: host molecules (β-CD polymers), a guest fluorophore of sensing probes (Np-Ad) and a guest internal reference (NpRh-Ad). In this strategy, the TPSNP possesses the merits of (i) improved water-solubility and biocompatibility; (ii) increased tissue penetration depth for bioimaging by two-photon excitation; (iii) quantitative and tunable assembly of functional guest molecules to obtain optimized detection conditions; (iv) a common approach to avoid the limitation of complicated design by adjustment of sensing probes; and (v) accurate quantitative analysis by virtue of reference molecules. As a proof-of-concept, we utilized the two-photon fluorescent probe NHS-Ad-based TPSNP-1 to realize accurate quantitative analysis of hydrogen sulfide (H 2 S), with high sensitivity and good selectivity in live cells, deep tissues and ex vivo -dissected organs, suggesting that the TPSNP is an ideal quantitative indicator for clinical samples. What's more, TPSNP will pave the way for designing and preparing advanced supramolecular sensors for biosensing and biomedicine. A two photon-excited fluorescent supramolecular nanoplatform is first designed for quantitative analysis with host molecules, sensing probes and an internal reference.
ISSN:2041-6520
2041-6539
DOI:10.1039/c7sc03977h