Loading…
Smart biomimetic micro/nanostructures based on liquid crystal elastomers and networks
A plethora of living organisms are equipped with smart functionalities that are usually rooted in their surface micro/nanostructures or underlying muscle tissues. Inspired by nature, extensive research efforts have been devoted to the development of novel biomimetic functional micro/nanostructured s...
Saved in:
Published in: | Soft matter 2017-11, Vol.13 (44), p.86-822 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A plethora of living organisms are equipped with smart functionalities that are usually rooted in their surface micro/nanostructures or underlying muscle tissues. Inspired by nature, extensive research efforts have been devoted to the development of novel biomimetic functional micro/nanostructured systems. Despite all the accomplishments, the emulation of biological adaptation and stimuli responsive actuation has been a longstanding challenge. The use of liquid crystal elastomers (LCEs) and networks (LCNs) for the fabrication of smart biomimetic micro/nanostructures has recently drawn extensive scientific attention and has become a growing field of research with promising prospects for emerging technologies. In this study, we review the recent progress in this field and portray the current challenges as well as the outlook of this field of research.
Liquid crystal elastomers and networks have become the materials of choice for the fabrication of bio-inspired micro/nanostructured surfaces. |
---|---|
ISSN: | 1744-683X 1744-6848 |
DOI: | 10.1039/c7sm01466j |