Loading…

Reversible fluorescence modulation of BSA stabilised copper nanoclusters for the selective detection of protamine and heparin

Protamine and heparin are the most important polyionic drugs used during surgeries and extracorporeal therapies. In this article, a selective and sensitive fluorescence method for the detection of both protamine and heparin was developed by using bovine serum albumin stabilised copper nanoclusters....

Full description

Saved in:
Bibliographic Details
Published in:Analyst (London) 2019-02, Vol.144 (5), p.1799-188
Main Authors: Aparna, R. S, Anjali Devi, J. S, Anjana, R. R, Nebu, John, George, Sony
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Protamine and heparin are the most important polyionic drugs used during surgeries and extracorporeal therapies. In this article, a selective and sensitive fluorescence method for the detection of both protamine and heparin was developed by using bovine serum albumin stabilised copper nanoclusters. Blue emitting fluorescent copper nanoclusters were synthesized in aqueous solution using bovine serum albumin as a capping agent and a reducing agent. A one pot microwave assisted method was adopted to synthesize fluorescent copper nanoclusters showing emission at 410 nm upon excitation at 330 nm. The fluorescence of copper nanoclusters was found to be enhanced after the addition of protamine and the limit of detection obtained is 0.12 ng mL −1 . The significant enhancement in fluorescence can be attributed to the electrostatic interactions between the copper nanocluster and protamine. In contrast, the enhanced fluorescence intensity of the copper nanocluster with protamine added was decreased after the addition of heparin, and the copper nanocluster regained its original fluorescence intensity. This can be attributed to the strong interaction of protamine with heparin and the limit of detection was calculated as 0.0406 ng mL −1 . The selectivity and sensitivity of the sensor for both protamine and heparin were also determined in the presence of potentially co-existing biomolecules, cations, and anions and satisfactory results were obtained. Additionally the validity of the proposed protamine and heparin sensor was attested in real sample matrices such as human urine samples and human blood serum samples. The results exhibited that the recovery percentage of protamine and heparin reached 98-99% and 92-99% in urine samples and 97-99% in serum samples. Depicting fluorescence sensing of protamine and heparin based on aggregation and disaggregation of copper nanoclusters.
ISSN:0003-2654
1364-5528
DOI:10.1039/c8an01703d