Loading…

Steered molecular dynamics simulations reveal the role of Ca2+ in regulating mechanostability of cellulose-binding proteinsElectronic supplementary information (ESI) available. See DOI: 10.1039/c8cp00925b

The conversion of cellulosic biomass into biofuels requires degradation of the biomass into fermentable sugars. The most efficient natural cellulase system for carrying out this conversion is an extracellular multi-enzymatic complex named the cellulosome. In addition to temperature and pH stability,...

Full description

Saved in:
Bibliographic Details
Main Authors: Gunnoo, Melissabye, Cazade, Pierre-André, Orlowski, Adam, Chwastyk, Mateusz, Liu, Haipei, Ta, Duy Tien, Cieplak, Marek, Nash, Michael, Thompson, Damien
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2268
container_issue 35
container_start_page 22674
container_title
container_volume 2
creator Gunnoo, Melissabye
Cazade, Pierre-André
Orlowski, Adam
Chwastyk, Mateusz
Liu, Haipei
Ta, Duy Tien
Cieplak, Marek
Nash, Michael
Thompson, Damien
description The conversion of cellulosic biomass into biofuels requires degradation of the biomass into fermentable sugars. The most efficient natural cellulase system for carrying out this conversion is an extracellular multi-enzymatic complex named the cellulosome. In addition to temperature and pH stability, mechanical stability is important for functioning of cellulosome domains, and experimental techniques such as Single Molecule Force Spectroscopy (SMFS) have been used to measure the mechanical strength of several cellulosomal proteins. Molecular dynamics computer simulations provide complementary atomic-resolution quantitative maps of domain mechanical stability for identification of experimental leads for protein stabilization. In this study, we used multi-scale steered molecular dynamics computer simulations, benchmarked against new SMFS measurements, to measure the intermolecular contacts that confer high mechanical stability to a family 3 Carbohydrate Binding Module protein (CBM3) derived from the archetypal Clostridium thermocellum cellulosome. Our data predicts that electrostatic interactions in the calcium binding pocket modulate the mechanostability of the cellulose-binding module, which provides an additional design rule for the rational re-engineering of designer cellulosomes for biotechnology. Our data offers new molecular insights into the origins of mechanostability in cellulose binding domains and gives leads for synthesis of more robust cellulose-binding protein modules. On the other hand, simulations predict that insertion of a flexible strand can promote alternative unfolding pathways and dramatically reduce the mechanostability of the carbohydrate binding module, which gives routes to rational design of tailormade fingerprint complexes for force spectroscopy experiments. Cellulosome nanomachines utilise binding specificity and high mechanical stability in breaking down cellulose.
doi_str_mv 10.1039/c8cp00925b
format article
fullrecord <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_c8cp00925b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c8cp00925b</sourcerecordid><originalsourceid>FETCH-rsc_primary_c8cp00925b3</originalsourceid><addsrcrecordid>eNqFj01Lw0AQhhdRsFYv3oXxpkjqbtPWxmuN2JOHeA-bzaRd2S92N4X8R3-U2yJ6EPQ0w7wPz8sQcsnohNG8uBdL4SgtpvPmiIzYbJFnBV3Ojr_3h8UpOQvhnVLK5iwfkY8qInpsQVuFolfcQzsYrqUIEKROhyitCeBxh1xB3CL4RILtYMWndyBNijYHzGxAo9hyY0PkjVQyDntMoFK9sgGzRpp2TzlvI0oTytQYvTVSQOidU6jRRO6HJO2s14dmuCmr9S3wHZeKNwonUCHC0-v6EX7_fE5OOq4CXnzNMbl6Lt9WL5kPonZe6iSvf_B8TK7_ymvXdvl_jk-Wh3gi</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Steered molecular dynamics simulations reveal the role of Ca2+ in regulating mechanostability of cellulose-binding proteinsElectronic supplementary information (ESI) available. See DOI: 10.1039/c8cp00925b</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Gunnoo, Melissabye ; Cazade, Pierre-André ; Orlowski, Adam ; Chwastyk, Mateusz ; Liu, Haipei ; Ta, Duy Tien ; Cieplak, Marek ; Nash, Michael ; Thompson, Damien</creator><creatorcontrib>Gunnoo, Melissabye ; Cazade, Pierre-André ; Orlowski, Adam ; Chwastyk, Mateusz ; Liu, Haipei ; Ta, Duy Tien ; Cieplak, Marek ; Nash, Michael ; Thompson, Damien</creatorcontrib><description>The conversion of cellulosic biomass into biofuels requires degradation of the biomass into fermentable sugars. The most efficient natural cellulase system for carrying out this conversion is an extracellular multi-enzymatic complex named the cellulosome. In addition to temperature and pH stability, mechanical stability is important for functioning of cellulosome domains, and experimental techniques such as Single Molecule Force Spectroscopy (SMFS) have been used to measure the mechanical strength of several cellulosomal proteins. Molecular dynamics computer simulations provide complementary atomic-resolution quantitative maps of domain mechanical stability for identification of experimental leads for protein stabilization. In this study, we used multi-scale steered molecular dynamics computer simulations, benchmarked against new SMFS measurements, to measure the intermolecular contacts that confer high mechanical stability to a family 3 Carbohydrate Binding Module protein (CBM3) derived from the archetypal Clostridium thermocellum cellulosome. Our data predicts that electrostatic interactions in the calcium binding pocket modulate the mechanostability of the cellulose-binding module, which provides an additional design rule for the rational re-engineering of designer cellulosomes for biotechnology. Our data offers new molecular insights into the origins of mechanostability in cellulose binding domains and gives leads for synthesis of more robust cellulose-binding protein modules. On the other hand, simulations predict that insertion of a flexible strand can promote alternative unfolding pathways and dramatically reduce the mechanostability of the carbohydrate binding module, which gives routes to rational design of tailormade fingerprint complexes for force spectroscopy experiments. Cellulosome nanomachines utilise binding specificity and high mechanical stability in breaking down cellulose.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c8cp00925b</identifier><language>eng</language><creationdate>2018-09</creationdate><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gunnoo, Melissabye</creatorcontrib><creatorcontrib>Cazade, Pierre-André</creatorcontrib><creatorcontrib>Orlowski, Adam</creatorcontrib><creatorcontrib>Chwastyk, Mateusz</creatorcontrib><creatorcontrib>Liu, Haipei</creatorcontrib><creatorcontrib>Ta, Duy Tien</creatorcontrib><creatorcontrib>Cieplak, Marek</creatorcontrib><creatorcontrib>Nash, Michael</creatorcontrib><creatorcontrib>Thompson, Damien</creatorcontrib><title>Steered molecular dynamics simulations reveal the role of Ca2+ in regulating mechanostability of cellulose-binding proteinsElectronic supplementary information (ESI) available. See DOI: 10.1039/c8cp00925b</title><description>The conversion of cellulosic biomass into biofuels requires degradation of the biomass into fermentable sugars. The most efficient natural cellulase system for carrying out this conversion is an extracellular multi-enzymatic complex named the cellulosome. In addition to temperature and pH stability, mechanical stability is important for functioning of cellulosome domains, and experimental techniques such as Single Molecule Force Spectroscopy (SMFS) have been used to measure the mechanical strength of several cellulosomal proteins. Molecular dynamics computer simulations provide complementary atomic-resolution quantitative maps of domain mechanical stability for identification of experimental leads for protein stabilization. In this study, we used multi-scale steered molecular dynamics computer simulations, benchmarked against new SMFS measurements, to measure the intermolecular contacts that confer high mechanical stability to a family 3 Carbohydrate Binding Module protein (CBM3) derived from the archetypal Clostridium thermocellum cellulosome. Our data predicts that electrostatic interactions in the calcium binding pocket modulate the mechanostability of the cellulose-binding module, which provides an additional design rule for the rational re-engineering of designer cellulosomes for biotechnology. Our data offers new molecular insights into the origins of mechanostability in cellulose binding domains and gives leads for synthesis of more robust cellulose-binding protein modules. On the other hand, simulations predict that insertion of a flexible strand can promote alternative unfolding pathways and dramatically reduce the mechanostability of the carbohydrate binding module, which gives routes to rational design of tailormade fingerprint complexes for force spectroscopy experiments. Cellulosome nanomachines utilise binding specificity and high mechanical stability in breaking down cellulose.</description><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFj01Lw0AQhhdRsFYv3oXxpkjqbtPWxmuN2JOHeA-bzaRd2S92N4X8R3-U2yJ6EPQ0w7wPz8sQcsnohNG8uBdL4SgtpvPmiIzYbJFnBV3Ojr_3h8UpOQvhnVLK5iwfkY8qInpsQVuFolfcQzsYrqUIEKROhyitCeBxh1xB3CL4RILtYMWndyBNijYHzGxAo9hyY0PkjVQyDntMoFK9sgGzRpp2TzlvI0oTytQYvTVSQOidU6jRRO6HJO2s14dmuCmr9S3wHZeKNwonUCHC0-v6EX7_fE5OOq4CXnzNMbl6Lt9WL5kPonZe6iSvf_B8TK7_ymvXdvl_jk-Wh3gi</recordid><startdate>20180912</startdate><enddate>20180912</enddate><creator>Gunnoo, Melissabye</creator><creator>Cazade, Pierre-André</creator><creator>Orlowski, Adam</creator><creator>Chwastyk, Mateusz</creator><creator>Liu, Haipei</creator><creator>Ta, Duy Tien</creator><creator>Cieplak, Marek</creator><creator>Nash, Michael</creator><creator>Thompson, Damien</creator><scope/></search><sort><creationdate>20180912</creationdate><title>Steered molecular dynamics simulations reveal the role of Ca2+ in regulating mechanostability of cellulose-binding proteinsElectronic supplementary information (ESI) available. See DOI: 10.1039/c8cp00925b</title><author>Gunnoo, Melissabye ; Cazade, Pierre-André ; Orlowski, Adam ; Chwastyk, Mateusz ; Liu, Haipei ; Ta, Duy Tien ; Cieplak, Marek ; Nash, Michael ; Thompson, Damien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_c8cp00925b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gunnoo, Melissabye</creatorcontrib><creatorcontrib>Cazade, Pierre-André</creatorcontrib><creatorcontrib>Orlowski, Adam</creatorcontrib><creatorcontrib>Chwastyk, Mateusz</creatorcontrib><creatorcontrib>Liu, Haipei</creatorcontrib><creatorcontrib>Ta, Duy Tien</creatorcontrib><creatorcontrib>Cieplak, Marek</creatorcontrib><creatorcontrib>Nash, Michael</creatorcontrib><creatorcontrib>Thompson, Damien</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gunnoo, Melissabye</au><au>Cazade, Pierre-André</au><au>Orlowski, Adam</au><au>Chwastyk, Mateusz</au><au>Liu, Haipei</au><au>Ta, Duy Tien</au><au>Cieplak, Marek</au><au>Nash, Michael</au><au>Thompson, Damien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Steered molecular dynamics simulations reveal the role of Ca2+ in regulating mechanostability of cellulose-binding proteinsElectronic supplementary information (ESI) available. See DOI: 10.1039/c8cp00925b</atitle><date>2018-09-12</date><risdate>2018</risdate><volume>2</volume><issue>35</issue><spage>22674</spage><epage>2268</epage><pages>22674-2268</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>The conversion of cellulosic biomass into biofuels requires degradation of the biomass into fermentable sugars. The most efficient natural cellulase system for carrying out this conversion is an extracellular multi-enzymatic complex named the cellulosome. In addition to temperature and pH stability, mechanical stability is important for functioning of cellulosome domains, and experimental techniques such as Single Molecule Force Spectroscopy (SMFS) have been used to measure the mechanical strength of several cellulosomal proteins. Molecular dynamics computer simulations provide complementary atomic-resolution quantitative maps of domain mechanical stability for identification of experimental leads for protein stabilization. In this study, we used multi-scale steered molecular dynamics computer simulations, benchmarked against new SMFS measurements, to measure the intermolecular contacts that confer high mechanical stability to a family 3 Carbohydrate Binding Module protein (CBM3) derived from the archetypal Clostridium thermocellum cellulosome. Our data predicts that electrostatic interactions in the calcium binding pocket modulate the mechanostability of the cellulose-binding module, which provides an additional design rule for the rational re-engineering of designer cellulosomes for biotechnology. Our data offers new molecular insights into the origins of mechanostability in cellulose binding domains and gives leads for synthesis of more robust cellulose-binding protein modules. On the other hand, simulations predict that insertion of a flexible strand can promote alternative unfolding pathways and dramatically reduce the mechanostability of the carbohydrate binding module, which gives routes to rational design of tailormade fingerprint complexes for force spectroscopy experiments. Cellulosome nanomachines utilise binding specificity and high mechanical stability in breaking down cellulose.</abstract><doi>10.1039/c8cp00925b</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof
issn 1463-9076
1463-9084
language eng
recordid cdi_rsc_primary_c8cp00925b
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
title Steered molecular dynamics simulations reveal the role of Ca2+ in regulating mechanostability of cellulose-binding proteinsElectronic supplementary information (ESI) available. See DOI: 10.1039/c8cp00925b
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A58%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Steered%20molecular%20dynamics%20simulations%20reveal%20the%20role%20of%20Ca2+%20in%20regulating%20mechanostability%20of%20cellulose-binding%20proteinsElectronic%20supplementary%20information%20(ESI)%20available.%20See%20DOI:%2010.1039/c8cp00925b&rft.au=Gunnoo,%20Melissabye&rft.date=2018-09-12&rft.volume=2&rft.issue=35&rft.spage=22674&rft.epage=2268&rft.pages=22674-2268&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c8cp00925b&rft_dat=%3Crsc%3Ec8cp00925b%3C/rsc%3E%3Cgrp_id%3Ecdi_FETCH-rsc_primary_c8cp00925b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true