Loading…
Benchmarking high surface area electrocatalysts in a gas diffusion electrode: measurement of oxygen reduction activities under realistic conditions
In this work, we introduce the application of gas diffusion electrodes (GDE) for benchmarking the electrocatalytic performance of high surface area fuel cell catalysts. It is demonstrated that GDEs offer several inherent advantages over the state-of-the-art technique, i.e. thin film rotating disk el...
Saved in:
Published in: | Energy & environmental science 2018-01, Vol.11 (4), p.988-994 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work, we introduce the application of gas diffusion electrodes (GDE) for benchmarking the electrocatalytic performance of high surface area fuel cell catalysts. It is demonstrated that GDEs offer several inherent advantages over the state-of-the-art technique,
i.e.
thin film rotating disk electrode (TF-RDE) measurements for fast fuel cell catalyst evaluation. The most critical advantage is reactant mass transport. While in RDE measurements the reactant mass transport is severely limited by the gas solubility of the reactant in the electrolyte, GDEs enable reactant transport rates similar to technical fuel cell devices. Hence, in contrast to TF-RDE measurements, performance data obtained from GDE measurements can be directly compared to membrane electrode assembly (MEA) tests. Therefore, the application of GDEs for the testing of fuel cell catalysts closes the gap between catalyst research in academia and real applications.
In this work, we introduce the application of gas diffusion electrodes (GDE) for benchmarking the electrocatalytic performance of high surface area fuel cell catalysts. |
---|---|
ISSN: | 1754-5692 1754-5706 |
DOI: | 10.1039/c8ee00019k |