Loading…

Highly stable enhanced near-infrared amplified spontaneous emission in solution-processed perovskite films by employing polymer and gold nanorodsElectronic supplementary information (ESI) available: Additional information provides the details of SEM and its cross-section images of MAPbI3 perovskite films after PMMA and Au NR coating, the transient absorption spectra and ASE performance of MAPbI3 with and without PMMA excited by a ns pulse laser. See DOI: 10.1039/c8nr08952c

Solution-processed organo-lead halide perovskites have emerged as promising optical gain media for tunable coherent light sources. The lasing performance is generally determined by the as-synthesized crystal quality. Noble metal nanostructures have been widely utilized to enhance optical responses d...

Full description

Saved in:
Bibliographic Details
Main Authors: Wu, Xiao, Jiang, Xiao-Fang, Hu, Xiaowen, Zhang, Ding-Feng, Li, Shuang, Yao, Xiang, Liu, Wangwang, Yip, Hin-Lap, Tang, Zhilie, Xu, Qing-Hua
Format: Article
Language:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Solution-processed organo-lead halide perovskites have emerged as promising optical gain media for tunable coherent light sources. The lasing performance is generally determined by the as-synthesized crystal quality. Noble metal nanostructures have been widely utilized to enhance optical responses due to their unique property of localized surface plasmon resonance. Herein, we report a simple method to enhance the near-infrared amplified spontaneous emission (ASE) performance of MAPbI 3 polycrystalline films by solution-processing a PMMA spacer layer and an Au NR-doped PMMA top layer on perovskite thin films. As a result, the ASE threshold of the triple-layer perovskite film was significantly reduced by around 36% and the ASE intensity increased by 13.9-fold, compared to the pristine film. The underlying mechanism was attributed to the combined effects of surface passivation by PMMA and plasmon resonance enhancement of Au NRs. The passivation effect results in suppressing the nonradiative recombination and prolonging excited state decay, which have been investigated by transient absorption and pump-probe measurements. The plasmon effect is systematically studied through distance-dependent and spectra-dependent plasmon enhanced emission. The perovskite films with PMMA and Au NR coating showed great stability for 180 min under intense pulse laser continuous irradiation. The improved ASE performance still remained after leaving the film under the atmosphere for more than one month. We have successfully demonstrated a highly stable and sustained ASE output from MAPbI 3 films under pulse laser excitation. This study provides a general approach for exploring plasmonic nanostructures in combination with polymers in the development and application of low-cost solution-processed semiconductor lasers. Highly stable enhanced near-infrared amplified spontaneous emission in solution-processed perovskite films by employing polymer and gold nanorods.
ISSN:2040-3364
2040-3372
DOI:10.1039/c8nr08952c